TOPOLOGIES ON MARKED SCHEMES

MARCO D’ADDEZIO

ABSTRACT. In this article we define and study the v-Zariski and v-étale topologies on the category
of marked schemes. This category was constructed in [D’A25] to define edged crystalline cohomology.
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We study the category of marked schemes, introduced in [D’A25, Def. 2.2.3], denoted by Sch.

1. THE v-ZARISKI AND v-ETALE TOPOLOGIES

1.1. Valuations on marked rings.
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Definition 1.1.1. A multiplicative valuation on a ring A is a map |.|, : A — I'U{0}, where (I, x)
is a totally ordered abelian group such that the following conditions are satisfied.
(1) 10, =0 and [1], = 1.
(2) |5L‘y‘v = |x|v|y|v for every x,y € A.
(3) |z + ylo < max{|z|y, |y|,} for every x,y € A.

The kernel of |.|,, denoted by p,, is the preimage of 0. If |.|, is a valuation of A we write K, for the
fraction field of A/p, and by R, the valuation subring of K, of elements x € K, such that |z|, < 1.
We say that two valuations |.|y, |.|, are equivalent, if p, = p,, and R, = Ry,. If A has a marking
ha, then it induces a simple marking on every ring R,,.
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Definition 1.1.2. We write by Spv(A) the set of equivalence classes of valuations of A and if
¢ : B — Aisaring homomorphism, we denote by Spa(A, B) the subset of Spv(A) of those valuations
|.|» such that |p(B)|, < 1. This construction naturally globalise to a morphism ¢ : X — Y of
schemes, and we write Spa(X,Y’) for the set of valuations bounded over Y. If X is a marked
scheme, then we define Spa(X) := Spa(X*, X). We also write Spa(A) for Spa(Spec(A)).

1.2. The v-Zariski topology.

Definition 1.2.1. An open t-immersion ¥ — X of marked schemes is a morphism such that
Y* — X' is an open immersion.

Lemma 1.2.2. Let ¢ : A — B be a morphism of principal marked rings. The induced morphism
Spec(B) — Spec(A) is an open t-immersion if and only if there exist fi,...,fn € A such that
o(f1),...,0(fn) generate the unit ideal in B* and such that ¢ : Al — B:o(fi) is an isomorphism for
every 1.

Definition 1.2.3. A v-Zariski covering of X is the datum of a set of -immersions of marked
schemes {p;: Y, — X}icr such that the following conditions are satisfied.
(1) {ph: Y} — X'}ier is a Zariski covering
(2) For every open U C X with U affine, there exists a finite set J, a map i: J — I, and affine
opens V; C Yy such that {J; ¢;(V;(R)) = U(R) for every marked valuation ring R.

Note that Condition (2) is a variant of the following condition.
(2) U; ¢i(Y;(R)) = X(R) for every marked valuation ring R.

The difference, is an additional finiteness assumption that is simply the analogue of the finiteness
assumption for fpqc coverings. Note that Condition (2) is minimally stronger than Condition (2’)
as explained by the following example.

Example 1.2.4. Let R be a DVR with uniformiser m, fraction field K, and residue field k. Consider
the ring A := [[>° R and write 7" e A for the element which is 7 on the n-th entry and 1
otherwise, m € A for the image of m € R via the diagonal embedding R — A, S; C A for the
multiplicative subset of A generated by 7(), 7(+1) ... and B; := Sl-_lA. Write X := Spec(A, 7 1)
and Y, := Spec(B;, 7 1). Since A, = (B;), for every i > 0, we have that the morphisms Y} — X*
are all isomorphisms, so that (1) is satisfied. Note also that this implies that Y ,;(K) = X (K) for
every i > 0, where K := (K,1). We want to show now that the family satisfies (2’) as well but does
not satisfy (2).

We have that both A and B; have Krull dimension 1 and the minimal prime ideals of A are in
bijection with the set of ultrafilters of N. If p is a minimal prime ideal of A associated to a non-
principal ultrafilter, then A/p — B;/pB; is an isomorphism because A/(e;);>0 = Bi/(e;)j>0. On
the other hand, if p; is the kernel of the j-th projection, then A/p; — B;/p;B; is an isomorphism
for j < ¢ and the embedding R — K for 5 > ¢. Thanks to this observations, we deduce that if
R:= (R,m 1), then J,; Y,;(R) = X(R), but for each M > 0, we have that | Jy<;<,, Y;(R) € X(R).

Remark 1.2.5. For Noetherian schemes the v-Zariski topology can be compared with the MZar
topology in [KM21].
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Lemma 1.2.6. If {yi: Y, — X}icr is a finite family of morphisms of principal marked schemes
such that Condition (1) and (2°) are satisfied, then it is a v-Zariski covering.

Definition 1.2.7. A big v-Zariski site, denoted by (Sch)yzar, is any site defined as in [Stacks, Tag
020S]. We also denote by (Sch/S)yzar the localisation of (Sch)yz,, with respect to an S € Sch and
by (S)vzar the small v-Zariski site of S.

Lemma 1.2.8. Every Zariski covering {U; — X }ier is a v-Zariski covering.

Proof. We may assume that X is affine, so that there exists a subcovering {U ;=X bieg with J C T
finite. After this reduction the result follows from the fact that if R is a marked valuation ring,
every R-point of X defines an R-point of U; for some J. O

Lemma 1.2.9. Every marked scheme X admits a v-Zariski covering of principal affine simply
marked scheme.

Proof. Thanks to Lemma 1.2.8 we may assume that X = Spec(A, fl_l, ..oy fr1) is principal affine.

We consider the subring By C Ay, (resp. By C Ay, ) generated by the image of A and % (resp.

%) endowed with the marking {fr}ee(r\(n}) (resp. {fe}ee(r\{n—1})).- We have that {Spec(B;) —

Spec(A) }ie1,2) is a v-Zariski covering of Spec(4). The result then follows by induction on n. [

Lemma 1.2.10. If (A,Ijl) is a simply marked ring and 14 is generated by a set {fi}ocr C 14,
then {Spec(A, f, 1) — Spec(A, I;")}eer is a v-Zariski covering.

Proof. To prove that {Spec(A, f; ')* — Spec(A, I1Y)'Yeer is a Zariski covering it is enough to note
that, by the assumption, for every prime ideal p which does not contain I4 there exists an f; which
is not in p. By Lemma 1.2.9, it is enough to prove the result after base change to ¢ : (A,Igl) —
(B,g~'). Thus we have to show that {Spec(B,p(fr)~1, g7 ') — Spec(B,g 1) }eer is a v-Zariski
covering. For this purpose, we note that there exists a finite subset L' C L such g € (¢o(f¢))eer -
Since for every valuation |.|, € Spa(B, g~!), there exists £ € L’ such that |g|, < |fe|v, we deduce that
{Spec(B, ¢(fe)~t,g71) — Spec(B, g~ 1) }rers satisfies Condition (2). This concludes the proof. [

Definition 1.2.11. A big v-Zariski site, denoted by (Sch)yzar, is any site defined as in [Stacks, Def.
020S] using v-Zariski coverings. We also denote by (Sch/S)yzar the localisation of (Sch)yza, with
respect to a marked scheme S € Sch and by (S)yzar the subcategory of t-open immersions T — S.

1.3. Structural sheaf and Serre vanishing. While the presheaf O" over (Sch/S)yzar which sends
X — O(X") is clearly a sheaf, the presheaf O which sends X — O(X) is not a sheaf. The marked
ring epimorphism
(Z[#, ), ¢71) = (Z[t],t7)

induces a v-Zariski covering of Spec(Z[t],t~!) with trivial Cech nerve. Therefore, the value of
a v-Zariski sheaf on Spec(Z[t],t™!) and Spec(Z[t?, 3], !) is the same. We denote by O* the
sheafification of O with respect to the v-Zariski topology. Since O(X) — O*(X) is injective, O is a
separated presheaf.

Definition 1.3.1. The v-refinement of A is the marked ring A" with A* the integral closure of
A — A" and the marking is induced by the marking of A.
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Definition 1.3.2. We say that a morphism of marked scheme Y — X satisfies the existence part
of the marked valuative criterion, if for every marked valuation ring R with fraction field K and
every solid diagram

Spec(K) — Y

Spec(R) —— X,

the dotted arrow exists.

Lemma 1.3.3. Let A be a principal marked ring with slicing element f. If A" is the v-refinement
of A, then the square

AT —— Tloespaa) v

J |

Af I HveSpa(A) K,

1s cartesian.

Proof. Write D for the fibre product of Ay and B := [[,cgpa(4) Bo over C:= ][, cqpa(a) Ko- Since
valuation rings are integrally closed, there is a natural morphism At — D. In addition, since
B — (' is injective, we deduce that D C Ay. It remains to prove that A — D is integral.

We follow the proof of Tag 01WM and Tag 01KE of [Stacks]. For an element g € D we write
J C Alt] for the kernel of the morphism A[t] — D, which sends t to g=*. We have that g is
integral over A if and only if 1 € J + (¢). In turn, to check the last condition it is enough to
prove that ¢ : Spec(Dy) — Spec(A[t]/J) is surjective. Note that ¢ is an isomorphism outside V'(f)
so that every prime p C AJt]/J which does not contain f is in the set-theoretic image of ¢. In
particular, since f is a nonzerodivisor in A[t]/.J, every minimal prime of A[t]/J is in the image.
It remains to show that if p C q are prime ideals in A[t]/J with f ¢ p and p is in the image of
¢, then the same is true for q. Arguing as in [Stacks, Tag 01KE], this follows from the fact that
Spec(Dy, f~1) — Spec(A[t]/J, f 1) satisfies the existence part of the marked valuative criterion. [J

Lemma 1.3.4. Spec(A*) — Spec(4) is a v-Zariski covering.

Proof. The natural map Spa(A*) — Spa(4) is a bijection and the valuation ring associated to a
multiplicative valuation v € Spa(A™) is canonically isomorphic to the one associated to the image
in Spa(4). O

Corollary 1.3.5. Fvery marked scheme admits a v-Zariski covering of principal v-refined affine
simply marked schemes.

Proof. By Lemma 1.2.9 every marked scheme admits a v-Zariski covering of principal affine marked
schemes and by Lemma 1.3.4 every principal affine marked scheme admits a v-refined v-Zariski
covering. ]

Definition 1.3.6. Let X = Spec(A) be an affine marked scheme. We say that {Spec(B;) —
Spec(A) }i<i<n is a standard v-Zariski covering if all the B; are principal v-refined marked rings.
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Lemma 1.3.7. Let {Spec(B;) — Spec(A) }1<i<n be a v-Zariski covering of affine principal marked
schemes. The sequence

0— A" = [[B)* = [](Ciy)*
i i
is evact, where C; ; = B; ® B;.
Lemma 1.3.8. If X = Spec(A) is a principal v-refined affine marked scheme, then OF(X) = A.

Proof. By the previous discussion, to compute O7 it is enough to sheafify O. Since O is separated,
we deduce that

0" (X) = ling (U, )
u

where the colimit runs over the v-Zariski coverings of X. By Corollary 1.3.5, it is enough to prove
that for every v-refined covering {Spec(B;) — Spec(A) }1<i<n, the sequence

i 1,j

is exact. Since C;; C Ci*j,

Lemma 1.3.7 yields the desired result. O
Lemma 1.3.9. If f : Y — X be a separated morphism of marked schemes such that Y* — X" is an
isomorphism, then the diagonal closed immersion Y — Y Xx --- xXx Y into the n-fold fibre product
over X is a v-Zariski covering for every n > 1. In addition, if Y — X is a v-Zariski covering and

F is a v-Zariski sheaf on X, then RI'yzar (X, F) = Rlyzar (Y, f*F).

Corollary 1.3.10. If Y — X and {U; — Y }icr are v-Zariski covering of qcqs marked schemes
and Y — X is separated, then the v-refined hypercovering associated to {U; — Y }icr is canonically
isomorphic to the one of {U; — X }ier.

Theorem 1.3.11. Let X be an affine principal marked scheme such that X is smooth over a field
k. The cohomology groups H',. (X,O") vanish fori > 0.

Proof. First note that if ¥ — X is a modification, Y = {U; — Y }ies is a covering of Y, and
Ux = {U; — X}ics is the induced covering of X, then by Lemma 1.3.9 we have that H*(U,O1) =
H*(Ux,O"). Therefore, looking Zariski locally on X and after taking macaulayfication, it is enough
to show that for every projective modification ¥ — X with ¥ Cohen—-Macaulay and every Zariski

covering U = {U, — Y}ser and every class in H®, (U,OF), there exists a Zariski refinement

V ={V,, — Y }nen which kills the class. This follows from Kovacs’ vanishing. O
1.4. Comparison with the Zariski cohomology. If S is any marked scheme, we have a functor
v: (Sch/S)vzar = (Sch/S)zar

which forgets the marking. This functor admits as a right adjoint the functor
uy/g: (Sch/S)zar — (Sch/S)vzar
which sends X — S to S Xy, () u1(X) — S. The counit of the adjunction is an isomorphism.

Lemma 1.4.1. The functor v is cocontinuous and uy;g s continuous.
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Proof. If {U; — v(X)} is a covering in (Sch/S)zar, then {u1 x (U;) — X} is a covering in (Sch/S)vzar
by Lemma 1.2.8. We deduce that v is cocontinuous. O

We write
a: Sh((@/ﬁ)vZar) - Sh((SCh/S)Zar)

for the map of topoi induced by v (viewed as a cocontinuous functor). We have that a.(F)(X) =
F(uy/s(X)) and o 1(G)(X) = G(X) for every X — S. Moreover, the counit a~ta,, — id is given
by

o N F)(X) = anF(X) = Fluys(X)) = F(X)
and the unit id — a,a ™! is the identity. By [Stacks, Tag 09YX], a~ ! admits also a left adjoint a
such that anhx = hy.

Lemma 1.4.2. The sheaf a*Og 18 a quasi-coherent sheaf of Ox-modules.

Definition 1.4.3. If X is a marked scheme we denote by X the marked scheme with underlying
scheme X+t := Specy(a,Ox) and marking induced by the one of X via the natural morphism
Xt — X. We say that X is v-refined if XT — X is an isomorphism.

Lemma 1.4.4. Sh((X™")vzar) = Sh(X 7..)-

Lemma 1.4.5. For a marked scheme X we have that the natural square

(Xred)+ — Xt

! |

Xred — X.

15 cartesian.

1.5. Stalks. If R is a marked valuation ring, for every x € X(R) one associates the functor

Dzt Xyzar — Set which sends U — X to the set of R-points over . This defines a point of
the site X, (cf. [Stacks, Tag 00Y5]).
Definition 1.5.1. If F is a sheaf of X .., the stalk of F at z, denoted by F,, is the inverse limit
lim  F(U),
T-U—X

where T := Spec(R) and the composition T — U — X is z.
The following lemma is related to [KM21, Prop. 4.25].

Lemma 1.5.2. The family of points of X

vZar @ssociated to local rings and marked valuation rings
s a conservative family.

Definition 1.5.3. We say that a morphism of marked schemes f: Y — X is a modification if
f:Y — X is proper and finitely presented and f: Y* — X* is an isomorphism.

Proposition 1.5.4. Let f: Y — X be a minimal modification. The v-Zariski higher direct image
Rf.05 is quasi-isomorphic to O%.

Proof. Stein’s factorisation [Stacks, Tag 03H2] to show f.Oy = O%. O



TOPOLOGIES ON MARKED SCHEMES 7

1.6. Closed immersions. Let i : Z — X a minimal closed immersion of marked schemes.
Lemma 1.6.1. The morphism it : 0% — 1,07, is surjective.

Proof. It is enough to check the surjectivity at the level of stalks. Therefore, we may assume that
X is the spectrum of a marked valuation ring (R, f~!). Let R — R/I the quotient induced by
i. We have to show that R = R — (R/I); is surjective. If p is the minimal prime of 2 which
contains I, we have that R/p is a valuation ring which coincides with (R/I);eq. By Lemma 1.4.5,
since (R/p); = R/p, we deduce that (R/I); = R/I. O

1.7. v-refined Kahler differentials. Let i : Z — X be a minimal closed embedding between
v-refined marked schemes. The kernel Z of the morphism O} — .0}, is a quasi-coherent sheaf

of (9+ -modules. In addition, the conormal sheaf Cz,x :=Z /T? is a quasi-coherent sheaf of (’)2—

modules. For a morphism Y — X of marked schemes we write QY V)X for Cy-+ J(Y % xY )+

Lemma 1.7.1. If f : Y — X is a morphism of marked S-schemes, then

fQ SO SO 50

X/S Y /S Y/X

1S exact.

Remark 1.7.2. Note that if Y — X is an admissible blowing up then Q;J/’X =0.

1.8. The v-étale topology.
Definition 1.8.1. Let X be a principal affine marked scheme. A standard v-étale covering of X is

the datum of a finite set of morphisms of principal affine marked schemes {Y; — X };c; such that
the following conditions are satisfied.

(1) {Y}) = X'}icr is an étale covering.

(2) For every marked valuation ring R and every T' € X (R) there exists a minimal extension

RCR,aniel,and T" € Y, (R') lifting T

The v-étale topology is the topology generated by the v-Zariski topology and the standard v-étale
coverings.
1.8.2. Let k is a field of positive characteristic p, let A C B be the minimal extension of marked
rings (k[z],z~1) C (k[z,y]/(y? — 2P~y — 2P~ 1), 271). Consider the induced morphism f:Y — X
where X := Spec(A) and Y := Spec(B). Note that f is a v-étale covering.

Lemma 1.8.3. The sheaf OF does not satisfy v-Zariski cohomological descent with respect to f.

Proof. Let G be the Galois group of f (seen as a constant group scheme over k) and let Y, be the
Cech nerve of Y — X. We have that

IY,,0%) ~ Homg(Z[G*"Y], B)

where Z[G*] is the simplicial group associated to the bar resolution of G' and B is endowed with
the natural G-action. This implies that the spectral sequence

E = HY(G, Hf,Zar(Y 0"))
converges to H‘Z,JZF;I(Y Ot), where the action of G on HﬂZar(Y Ot) is the one induced by the action

on Y. We have that H%,, (Y,O%) = B and H!, (Y,0%) =0 for i > 0, so that H.,,, (Y,,O%) =
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H(G, B). Since G = Z/p as abstract groups, if ¢ € G is the automorphism which sends y + y + =
and Tr : B — B is the endomorphism 1 4 o + - - + ¢?~!, then

oAy, 0%) = B"=/(c - 1)B.

vZar

The unit 1 € B'Tr:[) is not in the image of ¢ — 1, as one can check after reducing modulo x. We
deduce that H2 (Y ,, O%) # 0 for every i > 0. O

vZar

More in general, we have the following result.

Proposition 1.8.4. Let R be a valuation ring with fraction field K and let R*P be the integral
closure of R in a separable closure of K. For every nonzero element f € R, we have

Hys (Spec(R, f71), 0F) = H* (K, R*?),

vét
where H®(K, R%P) denote the Galois cohomology groups of R*P endowed with the natural Galois
action.
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