
TOPOLOGIES ON MARKED SCHEMES

MARCO D’ADDEZIO

Abstract. In this article we define and study the v-Zariski and v-étale topologies on the category

of marked schemes. This category was constructed in [D’A25] to define edged crystalline cohomology.
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1. The v-Zariski and v-étale topologies

We study the category of marked schemes, introduced in [D’A25, Def. 2.2.3], denoted by Sch.

1.1. Valuations on marked rings.

Definition 1.1.1. A multiplicative valuation on a ring A is a map |.|v : A → Γ∪ {0}, where (Γ,×)
is a totally ordered abelian group such that the following conditions are satisfied.

(1) |0|v = 0 and |1|v = 1.
(2) |xy|v = |x|v|y|v for every x, y ∈ A.
(3) |x+ y|v ≤ max{|x|v, |y|v} for every x, y ∈ A.

The kernel of |.|v, denoted by pv, is the preimage of 0. If |.|v is a valuation of A we write Kv for the
fraction field of A/pv and by Rv the valuation subring of Kv of elements x ∈ Kv such that |x|v ≤ 1.
We say that two valuations |.|v, |.|w are equivalent, if pv = pw and Rv = Rw. If A has a marking
hA, then it induces a simple marking on every ring Rv.

Date: September 8, 2025.

Key words and phrases. Modulus pair.

1



2 MARCO D’ADDEZIO

Definition 1.1.2. We write by Spv(A) the set of equivalence classes of valuations of A and if
φ : B → A is a ring homomorphism, we denote by Spa(A,B) the subset of Spv(A) of those valuations
|.|v such that |φ(B)|v ≤ 1. This construction naturally globalise to a morphism φ : X → Y of
schemes, and we write Spa(X,Y ) for the set of valuations bounded over Y . If X is a marked
scheme, then we define Spa(X) := Spa(Xι, X). We also write Spa(A) for Spa(Spec(A)).

1.2. The v-Zariski topology.

Definition 1.2.1. An open ι-immersion Y → X of marked schemes is a morphism such that
Y ι → Xι is an open immersion.

Lemma 1.2.2. Let φ : A → B be a morphism of principal marked rings. The induced morphism
Spec(B) → Spec(A) is an open ι-immersion if and only if there exist f1, . . . , fn ∈ A such that
φ(f1), . . . , φ(fn) generate the unit ideal in Bι and such that φ : Aι

fi
→ Bι

φ(fi)
is an isomorphism for

every i.

Definition 1.2.3. A v-Zariski covering of X is the datum of a set of ι-immersions of marked
schemes {φi : Y i → X}i∈I such that the following conditions are satisfied.

(1) {φι
i : Y

ι
i → Xι}i∈I is a Zariski covering

(2) For every open U ⊆ X with U affine, there exists a finite set J , a map i : J → I, and affine
opens V j ⊆ Y i(j) such that

⋃
j φj(V j(R)) = U(R) for every marked valuation ring R.

Note that Condition (2) is a variant of the following condition.

(2’)
⋃

i φi(Y i(R)) = X(R) for every marked valuation ring R.

The difference, is an additional finiteness assumption that is simply the analogue of the finiteness
assumption for fpqc coverings. Note that Condition (2) is minimally stronger than Condition (2’)
as explained by the following example.

Example 1.2.4. Let R be a DVR with uniformiser π, fraction field K, and residue field k. Consider
the ring A :=

∏∞
n=0R and write π(n) ∈ A for the element which is π on the n-th entry and 1

otherwise, π ∈ A for the image of π ∈ R via the diagonal embedding R → A, Si ⊆ A for the
multiplicative subset of A generated by π(i), π(i+1), · · · , and Bi := S−1

i A. Write X := Spec(A, π−1)
and Y i := Spec(Bi, π

−1). Since Aπ = (Bi)π for every i ≥ 0, we have that the morphisms Y ι
i → Xι

are all isomorphisms, so that (1) is satisfied. Note also that this implies that Y i(K) = X(K) for
every i ≥ 0, where K := (K, 1). We want to show now that the family satisfies (2’) as well but does
not satisfy (2).

We have that both A and Bi have Krull dimension 1 and the minimal prime ideals of A are in
bijection with the set of ultrafilters of N. If p is a minimal prime ideal of A associated to a non-
principal ultrafilter, then A/p → Bi/pBi is an isomorphism because A/(ej)j≥0 = Bi/(ej)j≥0. On
the other hand, if pj is the kernel of the j-th projection, then A/pj → Bi/pjBi is an isomorphism
for j < i and the embedding R ↪→ K for j ≥ i. Thanks to this observations, we deduce that if
R := (R, π−1), then

⋃
0≤i Y i(R) = X(R), but for each M ≥ 0, we have that

⋃
0≤i≤M Y i(R) ⊊ X(R).

Remark 1.2.5. For Noetherian schemes the v-Zariski topology can be compared with the MZar
topology in [KM21].
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Lemma 1.2.6. If {φi : Y i → X}i∈I is a finite family of morphisms of principal marked schemes
such that Condition (1) and (2’) are satisfied, then it is a v-Zariski covering.

Definition 1.2.7. A big v-Zariski site, denoted by (Sch)vZar, is any site defined as in [Stacks, Tag
020S]. We also denote by (Sch/S)vZar the localisation of (Sch)vZar with respect to an S ∈ Sch and
by (S)vZar the small v-Zariski site of S.

Lemma 1.2.8. Every Zariski covering {U i → X}i∈I is a v-Zariski covering.

Proof. We may assume that X is affine, so that there exists a subcovering {U j → X}i∈J with J ⊆ I
finite. After this reduction the result follows from the fact that if R is a marked valuation ring,
every R-point of X defines an R-point of Uj for some J . □

Lemma 1.2.9. Every marked scheme X admits a v-Zariski covering of principal affine simply
marked scheme.

Proof. Thanks to Lemma 1.2.8 we may assume that X = Spec(A, f−1
1 , . . . , f−1

n ) is principal affine.

We consider the subring B1 ⊆ Afn (resp. B2 ⊆ Afn) generated by the image of A and fn−1

fn
(resp.

fn
fn−1

) endowed with the marking {fℓ}ℓ∈(L\{n}) (resp. {fℓ}ℓ∈(L\{n−1})). We have that {Spec(Bi) →
Spec(A)}i∈{1,2} is a v-Zariski covering of Spec(A). The result then follows by induction on n. □

Lemma 1.2.10. If (A, I−1
A ) is a simply marked ring and IA is generated by a set {fℓ}ℓ∈L ⊆ IA,

then {Spec(A, f−1
ℓ ) → Spec(A, I−1

A )}ℓ∈L is a v-Zariski covering.

Proof. To prove that {Spec(A, f−1
ℓ )ι → Spec(A, I−1

A )ι}ℓ∈L is a Zariski covering it is enough to note
that, by the assumption, for every prime ideal p which does not contain IA there exists an fi which
is not in p. By Lemma 1.2.9, it is enough to prove the result after base change to φ : (A, I−1

A ) →
(B, g−1). Thus we have to show that {Spec(B,φ(fℓ)

−1, g−1) → Spec(B, g−1)}ℓ∈L is a v-Zariski
covering. For this purpose, we note that there exists a finite subset L′ ⊆ L such g ∈ (φ(fℓ))ℓ∈L′ .
Since for every valuation |.|v ∈ Spa(B, g−1), there exists ℓ ∈ L′ such that |g|v ≤ |fℓ|v, we deduce that
{Spec(B,φ(fℓ)

−1, g−1) → Spec(B, g−1)}ℓ∈L′ satisfies Condition (2). This concludes the proof. □

Definition 1.2.11. A big v-Zariski site, denoted by (Sch)vZar, is any site defined as in [Stacks, Def.
020S] using v-Zariski coverings. We also denote by (Sch/S)vZar the localisation of (Sch)vZar with
respect to a marked scheme S ∈ Sch and by (S)vZar the subcategory of ι-open immersions T → S.

1.3. Structural sheaf and Serre vanishing. While the presheaf Oι over (Sch/S)vZar which sends
X 7→ O(Xι) is clearly a sheaf, the presheaf O which sends X 7→ O(X) is not a sheaf. The marked
ring epimorphism

(Z[t2, t3], t−1) → (Z[t], t−1)

induces a v-Zariski covering of Spec(Z[t], t−1) with trivial Čech nerve. Therefore, the value of
a v-Zariski sheaf on Spec(Z[t], t−1) and Spec(Z[t2, t3], t−1) is the same. We denote by O+ the
sheafification of O with respect to the v-Zariski topology. Since O(X) → Oι(X) is injective, O is a
separated presheaf.

Definition 1.3.1. The v-refinement of A is the marked ring A+ with A+ the integral closure of
A → Aι and the marking is induced by the marking of A.
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Definition 1.3.2. We say that a morphism of marked scheme Y → X satisfies the existence part
of the marked valuative criterion, if for every marked valuation ring R with fraction field K and
every solid diagram

Spec(K) Y

Spec(R) X,

the dotted arrow exists.

Lemma 1.3.3. Let A be a principal marked ring with slicing element f . If A+ is the v-refinement
of A, then the square

A+
∏

v∈Spa(A)Rv

Af
∏

v∈Spa(A)Kv

is cartesian.

Proof. Write D for the fibre product of Af and B :=
∏

v∈Spa(A)Rv over C :=
∏

v∈Spa(A)Kv. Since

valuation rings are integrally closed, there is a natural morphism A+ → D. In addition, since
B → C is injective, we deduce that D ⊆ Af . It remains to prove that A → D is integral.

We follow the proof of Tag 01WM and Tag 01KE of [Stacks]. For an element g ∈ D we write
J ⊆ A[t] for the kernel of the morphism A[t] → Dg which sends t to g−1. We have that g is
integral over A if and only if 1 ∈ J + (t). In turn, to check the last condition it is enough to
prove that φ : Spec(Dg) → Spec(A[t]/J) is surjective. Note that φ is an isomorphism outside V (f)
so that every prime p ⊆ A[t]/J which does not contain f is in the set-theoretic image of φ. In
particular, since f is a nonzerodivisor in A[t]/J , every minimal prime of A[t]/J is in the image.
It remains to show that if p ⊆ q are prime ideals in A[t]/J with f ̸∈ p and p is in the image of
φ, then the same is true for q. Arguing as in [Stacks, Tag 01KE], this follows from the fact that
Spec(Dg, f

−1) → Spec(A[t]/J, f−1) satisfies the existence part of the marked valuative criterion. □

Lemma 1.3.4. Spec(A+) → Spec(A) is a v-Zariski covering.

Proof. The natural map Spa(A+) → Spa(A) is a bijection and the valuation ring associated to a
multiplicative valuation v ∈ Spa(A+) is canonically isomorphic to the one associated to the image
in Spa(A). □

Corollary 1.3.5. Every marked scheme admits a v-Zariski covering of principal v-refined affine
simply marked schemes.

Proof. By Lemma 1.2.9 every marked scheme admits a v-Zariski covering of principal affine marked
schemes and by Lemma 1.3.4 every principal affine marked scheme admits a v-refined v-Zariski
covering. □

Definition 1.3.6. Let X = Spec(A) be an affine marked scheme. We say that {Spec(Bi) →
Spec(A)}1≤i≤n is a standard v-Zariski covering if all the Bi are principal v-refined marked rings.
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Lemma 1.3.7. Let {Spec(Bi) → Spec(A)}1≤i≤n be a v-Zariski covering of affine principal marked
schemes. The sequence

0 → A+ →
∏
i

(Bi)
+ →

∏
i,j

(Ci,j)
+

is exact, where Ci,j := Bi ⊗Bj .

Lemma 1.3.8. If X = Spec(A) is a principal v-refined affine marked scheme, then O+(X) = A.

Proof. By the previous discussion, to compute O+ it is enough to sheafify O. Since O is separated,
we deduce that

O+(X) = lim−→
U

Ȟ0(U ,O)

where the colimit runs over the v-Zariski coverings of X. By Corollary 1.3.5, it is enough to prove
that for every v-refined covering {Spec(Bi) → Spec(A)}1≤i≤n, the sequence

0 → A →
∏
i

Bi →
∏
i,j

Ci,j

is exact. Since Ci,j ⊆ C+

i,j , Lemma 1.3.7 yields the desired result. □

Lemma 1.3.9. If f : Y → X be a separated morphism of marked schemes such that Y ι → Xι is an
isomorphism, then the diagonal closed immersion Y ↪→ Y ×X · · · ×X Y into the n-fold fibre product
over X is a v-Zariski covering for every n ≥ 1. In addition, if Y → X is a v-Zariski covering and
F is a v-Zariski sheaf on X, then RΓvZar(X,F) = RΓvZar(Y , f∗F).

Corollary 1.3.10. If Y → X and {U i → Y }i∈I are v-Zariski covering of qcqs marked schemes
and Y → X is separated, then the v-refined hypercovering associated to {U i → Y }i∈I is canonically
isomorphic to the one of {U i → X}i∈I .

Theorem 1.3.11. Let X be an affine principal marked scheme such that X is smooth over a field
k. The cohomology groups H i

vZar(X,O+) vanish for i > 0.

Proof. First note that if Y → X is a modification, U = {U i → Y }i∈I is a covering of Y , and
UX = {U i → X}i∈I is the induced covering of X, then by Lemma 1.3.9 we have that Ȟ•(U ,O+) =
Ȟ•(UX ,O+). Therefore, looking Zariski locally on X and after taking macaulayfication, it is enough
to show that for every projective modification Y → X with Y Cohen–Macaulay and every Zariski
covering U = {U ℓ → Y }ℓ∈L and every class in Ȟ•

vZar(U ,O+), there exists a Zariski refinement
V = {V m → Y }m∈M which kills the class. This follows from Kovacs’ vanishing. □

1.4. Comparison with the Zariski cohomology. If S is any marked scheme, we have a functor

v : (Sch/S)vZar → (Sch/S)Zar

which forgets the marking. This functor admits as a right adjoint the functor

u1/S : (Sch/S)Zar → (Sch/S)vZar

which sends X → S to S ×u1(S) u1(X) → S. The counit of the adjunction is an isomorphism.

Lemma 1.4.1. The functor v is cocontinuous and u1/S is continuous.
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Proof. If {Ui → v(X)} is a covering in (Sch/S)Zar, then {u1,X(Ui) → X} is a covering in (Sch/S)vZar
by Lemma 1.2.8. We deduce that v is cocontinuous. □

We write

α : Sh((Sch/S)vZar) → Sh((Sch/S)Zar)

for the map of topoi induced by v (viewed as a cocontinuous functor). We have that α∗(F)(X) =
F(u1/S(X)) and α−1(G)(X) = G(X) for every X → S. Moreover, the counit α−1α∗ → id is given
by

α−1(α∗F)(X) = α∗F(X) = F(u1/S(X)) → F(X)

and the unit id → α∗α
−1 is the identity. By [Stacks, Tag 09YX], α−1 admits also a left adjoint α!

such that α!hX = hX .

Lemma 1.4.2. The sheaf α∗O+

X is a quasi-coherent sheaf of OX-modules.

Definition 1.4.3. If X is a marked scheme we denote by X+ the marked scheme with underlying
scheme X+ := SpecX(α∗OX) and marking induced by the one of X via the natural morphism
X+ → X. We say that X is v-refined if X+ → X is an isomorphism.

Lemma 1.4.4. Sh((X+)vZar) = Sh(XvZar).

Lemma 1.4.5. For a marked scheme X we have that the natural square

(Xred)
+ X+

Xred X.

is cartesian.

1.5. Stalks. If R is a marked valuation ring, for every x ∈ X(R) one associates the functor
px : XvZar → Set which sends U → X to the set of R-points over x. This defines a point of
the site XvZar (cf. [Stacks, Tag 00Y5]).

Definition 1.5.1. If F is a sheaf of XvZar, the stalk of F at x, denoted by Fx, is the inverse limit

lim−→
T→U→X

F(U),

where T := Spec(R) and the composition T → U → X is x.

The following lemma is related to [KM21, Prop. 4.25].

Lemma 1.5.2. The family of points of XvZar associated to local rings and marked valuation rings
is a conservative family.

Definition 1.5.3. We say that a morphism of marked schemes f : Y → X is a modification if
f : Y → X is proper and finitely presented and f : Y ι → Xι is an isomorphism.

Proposition 1.5.4. Let f : Y → X be a minimal modification. The v-Zariski higher direct image
Rf∗O+

Y is quasi-isomorphic to O+

X .

Proof. Stein’s factorisation [Stacks, Tag 03H2] to show f∗O+

Y = O+

X . □
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1.6. Closed immersions. Let i : Z ↪→ X a minimal closed immersion of marked schemes.

Lemma 1.6.1. The morphism i♯ : O+

X → i∗O+

Z is surjective.

Proof. It is enough to check the surjectivity at the level of stalks. Therefore, we may assume that
X is the spectrum of a marked valuation ring (R, f−1). Let R ↠ R/I the quotient induced by
i. We have to show that R = R+

f → (R/I)+f is surjective. If p is the minimal prime of R which

contains I, we have that R/p is a valuation ring which coincides with (R/I)red. By Lemma 1.4.5,
since (R/p)+f = R/p, we deduce that (R/I)+f = R/I. □

1.7. v-refined Kähler differentials. Let i : Z ↪→ X be a minimal closed embedding between
v-refined marked schemes. The kernel I of the morphism O+

X ↠ i∗O+

Z is a quasi-coherent sheaf

of O+

X -modules. In addition, the conormal sheaf CZ/X := I/I2 is a quasi-coherent sheaf of O+

X -

modules. For a morphism Y → X of marked schemes we write Ω1,+
Y /X for CY +/(Y×XY )+ .

Lemma 1.7.1. If f : Y → X is a morphism of marked S-schemes, then

f∗Ω1,+
X/S → Ω1,+

Y /S → Ω1,+
Y /X → 0

is exact.

Remark 1.7.2. Note that if Y → X is an admissible blowing up then Ω1,+
Y /X = 0.

1.8. The v-étale topology.

Definition 1.8.1. Let X be a principal affine marked scheme. A standard v-étale covering of X is
the datum of a finite set of morphisms of principal affine marked schemes {Y i → X}i∈I such that
the following conditions are satisfied.

(1) {Y ι
i → Xι}i∈I is an étale covering.

(2) For every marked valuation ring R and every T ∈ X(R) there exists a minimal extension
R ⊆ R′, an i ∈ I, and T ′ ∈ Y i(R

′) lifting T .

The v-étale topology is the topology generated by the v-Zariski topology and the standard v-étale
coverings.

1.8.2. Let k is a field of positive characteristic p, let A ⊆ B be the minimal extension of marked
rings (k[x], x−1) ⊆ (k[x, y]/(yp − xp−1y − xp−1), x−1). Consider the induced morphism f : Y → X
where X := Spec(A) and Y := Spec(B). Note that f is a v-étale covering.

Lemma 1.8.3. The sheaf O+ does not satisfy v-Zariski cohomological descent with respect to f .

Proof. Let G be the Galois group of f (seen as a constant group scheme over k) and let Y • be the
Čech nerve of Y → X. We have that

Γ(Y •,O+) ≃ HomG(Z[G•+1], B)

where Z[G•+1] is the simplicial group associated to the bar resolution of G and B is endowed with
the natural G-action. This implies that the spectral sequence

Ei,j
2 := H i(G,Hj

vZar(Y ,O+))

converges to H i+j
vZar(Y •,O+), where the action of G on Hj

vZar(Y ,O+) is the one induced by the action

on Y . We have that H0
vZar(Y ,O+) = B and H i

vZar(Y ,O+) = 0 for i > 0, so that H i
vZar(Y •,O+) =
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H i(G,B). Since G = Z/p as abstract groups, if σ ∈ G is the automorphism which sends y 7→ y + x
and Tr : B → B is the endomorphism 1 + σ + · · ·+ σp−1, then

H2i+1
vZar (Y •,O+) = BTr=0/(σ − 1)B.

The unit 1 ∈ BTr=0 is not in the image of σ − 1, as one can check after reducing modulo x. We
deduce that H2i+1

vZar (Y •,O+) ̸= 0 for every i ≥ 0. □

More in general, we have the following result.

Proposition 1.8.4. Let R be a valuation ring with fraction field K and let Rsep be the integral
closure of R in a separable closure of K. For every nonzero element f ∈ R, we have

H•
vét(Spec(R, f−1),O+) = H•(K,Rsep),

where H•(K,Rsep) denote the Galois cohomology groups of Rsep endowed with the natural Galois
action.
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