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Zusammenfassung

In dieser Doktorarbeit studieren wir die Monodromiegruppen von lisse Garben und Isokristallen
in positiver Charakteristik. Das erste Ziel ist es, die Unabhéngigkeit fiir Objekte mit derselben
L-Funktion zu zeigen. Im letzten Abschnitt zeigen wir die Endlichkeit perfekter Torsionspunkte
einer abelschen Varietét. Dies erweitert den Satz von Lang-Néron und beantwortet positiv eine
Frage von Esnault.

Abstract

In this thesis we study the monodromy groups of lisse sheaves and isocrystals in positive char-
acteristic. The first aim is to prove independence results for objects with the same L-function.
In the last section we show the finiteness of perfect torsion points of an abelian variety. This
extends a theorem of Lang—Néron and answers positively a question of Esnault.
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Introduction

In the first half of the twentieth century, Weil started his visionary work aimed to extend the
known results in algebraic geometry to varieties over fields or rings arising from arithmetic.
His main contribution in this direction was the proof of the Riemann Hypothesis for smooth
projective curves over finite fields. The missing piece for a treatment of the problem in higher
dimensions was the lack of a suitable cohomology theory, with characteristic 0 coefficients, for
varieties over finite fields. For a smooth projective curve, a direct construction is available by
means of the Jacobian.

Grothendieck, influenced by the work of Serre, had the bright idea that étale covers were
the key tool to define a “nice” QQ;-linear cohomology theory, in positive characteristic p, when
¢ is a prime different from p. This cohomology is called ¢-adic étale cohomology. Some years
later, he also suggested a way to define a cohomology with p-adic coefficients, which is called
crystalline cohomology.

To a cohomology theory one can usually associate coefficient objects which represent vari-
ations of cohomology groups of constant rank. In the case of f-adic étale cohomology, these
objects are the fl-adic local systems or lisse sheaves. For crystalline cohomology, the initial
notion of Grothendieck was the one of crystal, or its rational version, called isocrystal. The
category of isocrystals is very large. One important feature of the isocrystals “coming from ge-
ometry” is that they are naturally endowed with a Frobenius structure, namely an isomorphism
of the object with the Frobenius pullback of itself. Dwork discovered that the F-structure forces
a certain local convergence property which is not verified in general. The isocrystals endowed
with a Frobenius structure are called F'-isocrystals.

When Berthelot introduced rigid cohomology, which is a certain variation of crystalline
cohomology, he also defined the category of overconvergent F-isocrystals. This category is
constructed Zariski-locally using Raynaud’s generic fibre of formal lifts. The characterizing
property of these objects is a certain convergence condition “at infinity”.

The common theme during my PhD has been the study of the category of lisse sheaves, as
well as the categories of convergent and overconvergent isocrystals. Under suitable assumptions
these categories are all Tannakian. Therefore, after possibly extending the field of constants,
they are equivalent to the category of linear representations of some pro-algebraic group scheme.
The image of the representation associated to an object is what we call the monodromy group
of the object. In the case of f-adic local systems, the monodromy groups have been already
extensively studied in the past. For the categories of F-isocrystals much less is known. In the
latter situation, an interesting feature, which does not admit an f-adic analogue, is the interplay
between the monodromy groups of convergent and overconvergent isocrystals.

Overconvergent F-isocrystals have many properties in common with ¢-adic local systems.
Crucial examples of this analogy are the theory of weights, developed by Kedlaya, and the Lang-



lands correspondence, proven by Abe (on a smooth curve over a finite fields). This allows us to
prove that the monodromy groups of overconvergent F-isocrystals “behave like” the ones of lisse
shaves. The monodromy groups of convergent F-isocrystals remain instead quite mysterious.

Our thesis is divided in three sections. The last section is written in collaboration with
Emiliano Ambrosi. Let us briefly summarize the main results of each section.

Section 1: The monodromy groups of lisse sheaves and overconvergent F-isocrystals,
[D’Ad20b] and [D’Ad21]

We extend previously known results of Serre, Larsen-Pink, Chin on the structure of the mon-
odromy groups of /-adic local systems and their independence of ¢ to overconvergent F-isocrystals
on smooth varieties over a finite field. We extend, for example, Chin’s result on the independence
of the neutral component of the monodromy groups. For this purpose, we introduce and study
the Frobenius tori of overconvergent F-isocrystals. These were firstly introduced by Serre for
(-adic Galois representations. We also show that the slope polygons of an F-isocrystal defined
on an abelian variety over a finite field are constant. This recovers a result of Tsuzuki. To do
this we prove that in this case the monodromy groups are commutative via an Eckmann-Hilton
argument.

Section 2: Remarks on the companions conjecture for normal varieties, [D’Ad20a]

We study the companions conjecture for lisse sheaves on normal varieties over a finite field. The
conjecture has been proven for smooth varieties by Drinfeld. We analyze the obstruction to
extending it to normal singular varieties. We formulate and study a related conjecture which
we verify in some particular cases.

Section 3: Maximal tori of monodromy groups of F-isocrystals and applications
(joint with Emiliano Ambrosi), [AD18]

We use the work done in Section 1 to study the monodromy groups of convergent F-isocrystals
which have an overconvergent extension. Thanks to the theory of Frobenius tori we show that
these groups are “big”. This fact has many consequences. On the one hand, we use it to prove
a special case of a conjecture proposed by Kedlaya on F-isocrystals. On the other hand, we
prove a finiteness result for the perfect torsion points of an abelian variety, giving a positive
answer to a question of Esnault. As an additional outcome of our work, we prove a weak
(weak) semi-simplicity statement for p-adic representations coming from pure overconvegent
F-isocrystals.
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1 The monodromy groups of lisse sheaves and overcon-
vergent F'-isocrystals

1.1 Introduction

1.1.1 Background

Deligne in [Del80] generalized the Riemann Hypothesis over finite fields, previously proven by
himself, to a result on the behaviour of the weights of lisse sheaves under higher direct image.
He also formulated a conjecture on other expected properties of lisse sheaves [ibid., Conjecture
1.2.10]. This conjecture was inspired by the Langlands reciprocity conjecture for GL,.

Conjecture 1.1.1.1. ' Let X, be a normal scheme of finite type over a finite field F, of
characteristic p and let Vo be an irreducible Weil lisse Q,-sheaf whose determinant has finite
order.

(i) Vo is pure of weight 0.

Q, such that for every closed point zo in Xy, the
t

(ii) There exists a number field E C Q,
wol, Vi) has coefficients in E, where Fy, is the geometric

characteristic polynomial det(1—
Frobenius at xg.

0

(iii) For every prime ¢ # p, the eigenvalues of the Frobenii at closed points of Vy are (-adic
units.

(iv) For a suitable field E (maybe larger than in (ii)) and for every finite place A not dividing
p, there exists a lisse Ey-sheaf compatible with Vo, namely a lisse E\-sheaf with the same
characteristic polynomials of the Frobenii at closed points as V.

(v) When A divides p, there exists some compatible crystalline object (“des petits camarades
cristallins”).

Objects with the same characteristic polynomials at closed points are also called companions
and the conjunction of (iv) and (v) is also known as the companions conjecture. The companions
conjecture for Weil lisse sheaves, namely part (iv), admits the following weaker form.

(iv’) If E is a number field as in (ii), for every finite place A not dividing p, there exists a lisse
E\-sheaf compatible with V.

"'We will omit the part of the conjecture on the p-adic valuations of the Frobenius eigenvalues at closed points.



In [Laf02] L. Lafforgue proved the Langlands reciprocity conjecture for GL, over function
fields. As a consequence, he obtained (i), (ii), (iii) and (iv’), when Xy is a smooth curve. Chin
then showed that in arbitrary dimension, if (ii) and (iv’) are true for every finite étale cover of
X, then (iv) is also true [Chi03]. As a consequence, one gets part (iv) of the conjecture when
Xy is a curve.

The lack of a Langlands correspondence for higher dimensional varieties (even at the level
of the formulation) forced one to generalize Deligne’s conjectures, reducing geometrically to the
case of curves. One of the difficulties is that one cannot rely on a Lefschetz theorem for the
étale fundamental group in positive characteristic (see for example [Esnl7, Lemma 5.4]). This
means that one cannot, in general, find a curve Cj in X, such that for every irreducible lisse
Q-sheaf V, of X,, the inverse image of Vy on Cj remains irreducible.

Luckily, one can replace the Lefschetz theorem with a weaker result. Rather than considering
all the lisse sheaves at the same time, one can fix the lisse sheaf and find a suitable curve where
the lisse sheaf remains irreducible (Theorem 1.3.7.5). In this way one can prove (i) and (iii) for
arbitrary varieties, using Lafforgue’s result. Parts (ii) and (iv’) require some more effort. The
former was obtained by Deligne in [Dell12], the latter by Drinfeld for smooth varieties in [Dril2]
and it is still open in general. Following the ideas of Wiesend in [Wie06] Drinfeld used a gluing
theorem for lisse sheaves [Drinfeld, op. cit., Theorem 2.5].

Passing to (v), Crew conjectured in [Cre92a, Conjecture 4.13] that the correct p-adic ana-
logue of lisse sheaves might be overconvergent F-isocrystals, introduced by Berthelot [Ber96a].
To endorse his conjecture, he proved the global monodromy theorem for these isocrystals, over
a smooth curve [Crew, op. cit., Theorem 4.9]. Many people have then worked in the direction
suggested by Crew (see for example [Ked04a] and [Ked06] for references).

Finally, Abe proves the Langlands reciprocity conjecture for overconvergent F-isocrystals,
over a smooth curve [Abel8]. In his work he used the theory of arithmetic 2-modules introduced
by Berthelot in [Ber96b| and mainly developed by Abe, Berthelot, Caro, and Tsuzuki. Abe’s re-
sult, combined with Lafforgue’s theorem, shows that on smooth curves there is a correspondence
between (certain) lisse sheaves and (certain) overconvergent F-isocrystals. Abe—Esnault, and
later Kedlaya, generalized one direction of the correspondence by constructing on smooth vari-
eties of arbitrary dimension, lisse sheaves that are compatible with overconvergent F-isocrystals
(see [AE16] and [Ked18]). Even in this case, they construct lisse sheaves via a reduction to the
case of curves. They both prove and use some Lefschetz type theorem, in combination with
Drinfeld’s gluing theorem for lisse sheaves.

1.1.2 Main results

Following Kedlaya [Ked18], we refer to lisse sheaves and overconvergent F-isocrystals as coef-
ficient objects. Let X, be a smooth connected variety over IF,. Suppose that & is a coefficient
object on X with all the eigenvalues of the Frobenii at closed points algebraic over Q. Thanks



to the known cases of the companions conjecture, & sits in an E-compatible system {Exo}rex,
where F is a number field, X is a set of finite places of E, containing all the places which do not
divide p, and {€) o }rex is a family of pairwise E-compatible Ej-coefficient objects (as in (iv)),
one for each A\ € ¥ (Theorem 1.3.8.2).

We use the new tools, presented above, to extend the results of A-independence of the
monodromy groups. Let F be an algebraic closure of F, and x an F-point of X,. For every
A€ X, let G(Eyp,x) be the arithmetic monodromy group of €,y and G(Ey,x) its geometric
monodromy group (see Definition 1.3.2.3). We generalize the result of Serre and Larsen—Pink
on the A-independence of the 7y of the monodromy groups (see [Ser00] and [LP95, Proposition
2.2]).

Theorem 1.1.2.1 (Theorem 1.4.1.1). The groups of connected components of G(Exo,x) and
G(Ex, x) are independent of \.

To prove such a theorem for overconvergent F-isocyrstals we have to relate their monodromy
groups with the étale fundamental group of X,. This is done in §1.3.3 and relies on some previous
work done by Crew in [Cre92al. Then the proof follows [LP95, Proposition 2.2].

We assume now, in addition, that for every A € X, the coefficient object &, is semi-
simple. Denote by pyo the tautological representation of G(&yp,z). We obtain the following
generalization of [Chi04, Theorem 1.4].

Theorem 1.1.2.2 (Theorem 1.4.3.2). After possibly replacing E with a finite extension, there
exists a connected split reductive group Gy over E such that, for every A € X, the extension of
scalars Go @p E\ is isomorphic to the neutral component of G(Exp,x). Moreover, there exists
a faithful E-linear representation py of Go and isomorphisms ¢y : Go @ Ey = G(Exp, x)° for
every A € X such that py @ E\ is isomorphic to pxo o @ap-

Notice that in Theorem 1.1.2.2 we have removed from [ibid., Theorem 1.4] the purity and
p-plain assumptions (cf. §1.3.1.15). Chin proves his result exploiting a reconstruction theorem
for connected split reductive groups (Theorem 1.4.3.4). To apply his theorem, he extends the
result of Serre in [Ser00] on Frobenius tori of étale lisse sheaves in [Chi04, Lemma 6.4]. We
further generalize Chin’s result on Frobenius tori.

Theorem 1.1.2.3 (Theorem 1.4.2.10). Let & be an algebraic coefficient object over Xo. There
exists a Zariski-dense subset A C X(IF) such that for every F-point x € A and every object
Fo € (&), the torus T'(Fo,x) is a mazimal torus of G(Fy,x). Moreover, if Gy is a coefficient
object compatible with &y, the subset A satisfies the same property for the objects in (Go).

We first prove Theorem 1.1.2.3 for algebraic étale lisse sheaves, by improving Serre’s finiteness
result in Corollary 1.4.2.7. This is done using Deligne’s conjectures. Then we deduce the general
case using a dimension data argument due to Larsen and Pink (see Proposition 1.4.2.8). Thanks
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to Theorem 1.1.2.3, we are able to prove Theorem 1.1.2.2 following Chin’s method. Theorem
1.1.2.3 is also used in §3 as a starting point to prove some rigidity results for the convergent
F'-isocrystals which admit an overconvergent extension. Thanks to Theorem 1.1.2.2 we are able
to prove a semi-simplicity statement for the Frobenii at closed points.

Corollary 1.1.2.4 (Corollary 1.4.3.9). Let & be a semi-simple Q,-coefficient object. The set
of closed points where the Frobenius is semi-simple is Zariski-dense in Xj.

This result is proven in [LP92, Proposition 7.2] for étale lisse sheaves. For overconvergent
F-isocrystals, the statement is new and it is obtained using Theorem 1.1.2.2. We will need
the full strength of Theorem 1.1.2.2, as we will also use the independence of the tautological
representation of compatible coefficient objects. Another outcome of the previous techniques,
is an independence result for the Lefschetz theorem for coefficient objects.

Theorem 1.1.2.5 (Theorem 1.4.4.2). Let fo : (Yo,y) — (Xo, ) be a morphism of geometrically
connected smooth pointed varieties. Let & and Fy be compatible geometrically semi-simple co-
efficient objects over Xy. Denote by vy : G(fi&o,y) = G(Eo, ) and ¥y : G(f§Fo,y) = G(Fo, x)
the morphisms induced by f; and by ¢ and i their restriction to the geometric monodromy
groups.

(i) If ¢ is an isomorphism, the same is true for ).
(i) If @o is an isomorphism, the same is true for .

We give a “cheap” proof of Theorem 1.1.2.5 which for -mixed coefficient objects avoids
Deligne’s conjecture. The proof relies on the Tannakian lemma [AE16, Lemma 1.6]. Finally, we
prove the following theorem for coefficient objects defined on abelian varieties.

Theorem 1.1.2.6 (Theorem 1.5.1.1). Let X be an abelian variety. Every absolutely irreducible
coefficient object with finite order determinant is finite. In particular, every t-pure coefficient
object on Xy becomes constant after passing to a finite étale cover.

We propose two proofs. The first one uses the Kiinneth formula (Proposition 1.3.4.4), an
Eckmann—Hilton argument and the global monodromy theorem (Theorem 1.3.5.4). This proof
does not rely on the Langlands programme. The second proof is a consequence of the known
cases of the companions conjecture and the global monodromy theorem for lisse sheaves. Using
this method one could actually prove a more general statement (see Remark 1.5.1.5).

As a consequence, we give a proof of Deligne’s conjectures for coefficient objects that does
not use automorphic representations (Corollary 1.5.1.3). We also obtain in Corollary 1.5.2.2
an alternative proof of a theorem of Tsuzuki on the constancy of the Newton polygons of F-
isocrystals on abelian varieties [Tsul7, Theorem 3.7].
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1.1.3 Comparison with previous work

In [Pallb, Theorem 8.23], Pal gives a proof of a special case of Theorem 1.1.2.2 for curves. It relies
on a strong Cebotarev density theorem for overconvergent F-isocrystals [ibid., Theorem 4.13],
which is now proven in [HP18|. Using the result on Frobenius tori, we do not use Hartl-P4l’s
theorem. It is also worth mentioning that in [Dril8], Drinfeld proves the independence of the
entire arithmetic monodromy groups (not only the neutral component), over Q,. He uses a
stronger representation-theoretic reconstruction theorem (see Remark 1.4.3.11).

1.1.4 The structure of §1

We define in §1.3.1 the categories of coefficient objects and geometric coefficient objects, and we
prove some basic results. We also recall some definitions related to the characteristic polynomials
of the Frobenii at closed points, and we show that p-plain (cf. §1.3.1.15) lisse sheaves are étale
(Proposition 1.3.1.17).

In §1.3.2, we define the arithmetic and the geometric monodromy groups of coefficient ob-
jects, using the Tannakian formalism. We also introduce the Tannakian fundamental groups
classifying coefficient objects and geometric coefficient objects. We present a fundamental ex-
act sequence relating these groups (Proposition 1.3.2.6). The result is essentially all proven in
the appendix for general neutral Tannakian categories with Frobenius. Then in §1.3.3 we show
that the groups of connected components of these fundamental groups are isomorphic to the
arithmetic and the geometric étale fundamental group (Proposition 1.3.3.3). We also prove a
complementary result, namely Proposition 1.3.3.4.

In §1.3.4 we prove the Kiinneth formula for the fundamental group classifying geometric
coefficient objects for projective connected varieties with a rational point. In §1.3.5 we recall the
main result on rank 1 coefficient objects (Theorem 1.3.5.1). We introduce in §1.3.5.3 the notion
of type and we prove some structural properties for them. In §1.3.6 we recollect some theorems
from Weil II that are now known for coefficient objects of both kinds. For example, the main
theorem on weights (Theorem 1.3.6.1). We present in §1.3.7 the state of Deligne’s conjectures.
In §1.3.8 we give the definition of compatible systems of lisse sheaves and overconvergent F'-
isocrystals and we state a stronger form of the companions conjecture in Theorem 1.3.8.2, due
to the work of Chin.

In §1.4, we investigate the properties of A-independence of the monodromy groups varying
in a compatible system of coefficient objects. We start by proving in §1.4.1 the A-independence
of the groups of connected components, generalizing the theorem of Serre and Larsen—Pink
(Theorem 1.1.2.1). In §1.4.2 we extend the theory of Frobenius tori to algebraic coefficient
objects and we prove Theorem 1.1.2.3. In §1.4.3 we prove Theorem 1.1.2.2 and Corollary 1.1.2.4
and in §1.4.4 we prove Theorem 1.1.2.5.

In §1.5 we focus on coefficient objects on abelian varieties. We give the two proofs of

12



Theorem 1.5.1.1, we prove Deligne’s conjectures for abelian varieties and we recover Tsuzuki’s
theorem in Corollary 1.5.2.2.
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1.2 Notation and conventions

1.2.0.1. We fix a prime number p and a positive power ¢. Let F, be a field with ¢ elements
and [F an algebraic closure of IF,. For every positive integer s we denote by F,s the subfield of
F with ¢° elements. If k is a field we will say that a separated scheme of finite type over k is a
variety over k. A curve will be a one dimensional variety. We denote by Xy a smooth variety
over some finite field k. If k is not specified, then it is assumed to be IF,. In this case, we denote
by X the extension of scalars Xy ®p, F over [F. In general, we denote with a subscript ¢ objects
and morphisms defined over [F,, and the suppression of the subscript will mean the extension
to F. We write ky, for the algebraic closure of F,, in I'( Xy, Ox,). Sometimes it will be useful to
consider Xy as a variety over kx,, just changing the structural morphism.

We denote by | Xy| the set of closed points of Xy. If xq is a closed point of Xy, the degree of
zo will be deg(xo) := [k(zo) : Fy]. A variety is said (F-)pointed if it is endowed with the choice
of an F-point. A morphism of pointed varieties (Yy,y) — (Xo,x) is a morphism of varieties
Yy — Xy which sends y to . An F-point x of X, determines a unique closed point of the
variety that we denote by xy. Moreover, x determines an identification kx, = F,s, for some
s € ZLyg.

1.2.0.2. The letter ¢ will denote a prime number. In general we allow ¢ to be equal to p. We fix
an algebraic closure Q of Q. For every number field E, we denote by |E|, the set of finite places
of E dividing ¢. We define |E|, := ., |Elr and |E] := J, |E],. We choose in a compatible
way, for every number field £ C Q and every A € |E|, a completion of E by A, denoted by Ej.
For every prime £, we denote by Q, the union of all the E\, when E varies among the number
fields £ C Q and \ is any place in |E|,. If K is a field of characteristic 0, an element a € K is
said to be an algebraic number if it is algebraic over Q. If a is an algebraic number we will say
that it is p-plain® if it is an f-adic unit for every ¢ # p.

1.2.1 Tannakian categories and affine group schemes

1.2.1.1. Let K be a field. We denote by Veck the category of finite dimensional K-vector spaces.
A Tannakian category over K will be a rigid abelian symmetric ®-category C together with an
isomorphism End(1) ~ K, that admits a faithful exact K-linear ®-functor w : C — Vecy, for
some field extension K C L. We will call such a functor a fibre functor of C over L. If in
addition C admits a fibre functor over K itself, we say that C is a neutral Tannakian category.

For every Tannakian category C over K, we say that an object in C is a trivial object if it
is isomorphic to 19" for some n € N. We say that an object V € C is irreducible if the only
subobjects of V' are 0 and V itself. We say that V' € C is absolutely irreducible if for ever finite
extension L/K, the extension of scalars V ®x L is irreducible. A Tannakian subcategory of C

2This is an abbreviation for the expression plain of characteristic p in [Chi04].
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is a strictly full abelian subcategory, closed under ®, duals, subobjects (and thus quotients). If
V is an object of C, we denote by (V') the smallest Tannakian subcategory of C containing V.

1.2.1.2. If w is a fibre functor of C, over an extension L, the affine group scheme Aut®(w) over
L will be the Tannakian group of C with respect to w. For every object V' € C, a fibre functor w
of C induces, by restriction, a fibre functor for the Tannakian category (V'), that we will denote
again by w. We also say that the Tannakian group of (V') with respect to w is the monodromy
group of V' (with respect to w). If the monodromy group of V' is finite, we say that V is a finite
object.

1.2.1.3. For every affine group scheme G, we denote by 7y(G) the group of connected components
of G and G° will be the connected component of G containing the neutral element, called the
neutral component of G. When G is an algebraic group, the reductive rank of G will be the
dimension of any maximal torus of G.

1.2.1.4. Let ¢ : G — H be a morphism of affine group schemes over K and let f: Repyx(H) —
Repk(G) be the induced restriction functor. By [DM82, Proposition 2.21], the morphism ¢ is
faithfully flat if and only if the functor f is fully faithful and it is closed under the operation of
taking subobjects. Moreover, ¢ is a closed immersion if and only if every object of Repg (G) is
a subquotient of an object in the essential image of f. In particular, if for a tensor generator V'
of Repg(H) (cf. ibid.), the object f(V) is a tensor generator of Repg(G), then ¢ is a closed
immersion. We will repeatedly use these facts in §1 without further comments. For simplicity,
when K is a characteristic 0 field, we will say that a morphism between affine group schemes
v : G — H is surjective if it is faithfully flat and we will say that ¢ is injective if it is a closed
immersion.

1.2.2 Weil lisse sheaves

We mainly use the notations and conventions for lisse sheaves as in [Del80].

1.2.2.1. If x is a geometric point of Xy, we denote by 7¢*(Xy, z) and 7¢*(X, z) the étale funda-
mental groups of X, and X respectively. If k is a finite extension of F, and k is an algebraic
closure of k, the inverse of the ¢l*Fa-power Frobenius will be the geometric Frobenius of k (with
respect to k). We denote by F the geometric Frobenius of F, with respect to F. For every
n € Zo we denote by W (IF/F ) the Weil group of Fyn (it is generated by F™). We also denote
by W (X, z) the Weil group of Xj.

Let xj, be a closed point of X in the same connected component of x. For any choice of
a geometric point &’ over xj, the geometric Frobenius of z{ with respect to 2’ determines by
functoriality an element v € W (X, z'). If we choose an étale path from z’ to z, it induces an
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isomorphism W (Xy, ') = W(Xo, z). The conjugacy class of the image of v in W (X, z), that
we will denote by Fy; € W(Xjy, ), depends only on x. The elements in F,, will be the Frobenii
at .

1.2.2.2. For every { # p we have a category LS(X,Q,) of lisse Q,-sheaves over X, that is
the 2-colimit of the categories LS(X, F)) of lisse E\-sheaves, where E) varies among the finite
extensions of Q in Q,. If X is not geometrically connected over F ¢ then these categories are
not Tannakian (the unit objects have too many endomorphisms). If z is a geometric point of Xj,
we denote by X(®) the connected component of X containing . The categories LS(X®), E)
and LS(X®) @Q,) are then always neutral Tannakian categories.

If V is a lisse Q,-sheaf on X, an n-th Frobenius structure on V is an action of W (F/F ) on
the pair (X, V) such that W(F/Fn) acts on X = X, ® F via the natural action on F. An n-th
Frobenius structure is equivalent to the datum of an isomorphism (F™)*V = V. The category
of lisse F)-sheaves equipped with a 1-st Frobenius structure will be the category of Weil lisse
E\-sheaves of Xy, denoted by Weil(Xy, F)). The categories Weil(Xy, F) are Tannakian. We
will often refer to Weil lisse sheaves simply as lisse sheaves of Xj.

For every geometric point x of X and every F\ we define a functor

U, 5, : Weil(Xy, Ey) — LS(X, Ey) — LS(X@ E))

where the first functor forgets the Frobenius structure and the second one is the inverse image
functor with respect to the open immersion X® < X. If V, is a Weil lisse sheaf, we remove
the subscript ¢ to indicate the lisse sheaf U, g, (V).

1.2.2.3. If we fix a geometric point z of X, there exists an equivalence between the category
of Weil lisse Q,-sheaves over X, and the finite-dimensional continuous Q,-representations of
the Weil group W (X, z). The equivalence sends a Weil lisse sheaf Vy to the representation of
W (X, ) on the stalk V,. A Weil lisse sheaf such that the associated representation of the Weil
group factors through the étale fundamental group will be an étale lisse sheaf.

1.2.2.4. Notation asin §1.2.2.3. If V; is a Weil lisse E)-sheaf, for every closed point xj, € | Xo| the
elements in F,; act on VV,. Even if these automorphisms are a priori different, their characteristic
polynomials do not change. We define (with a small abuse of notation) P, (Vo,t) := det(1 —
tFy |Ve) € Ei[t]. This will be the (Frobenius) characteristic polynomial of Vy at .

For every natural number n, a lisse Q,-sheaf is said to be pure of weight n, if for every
closed point zj of Xy, the eigenvalues of any element in F, are algebraic numbers and all the
conjugates have complex absolute value (#r(x)))™2. If 1 : Q, = C and w is a real number, we
say that a lisse sheaf is ¢-pure of t-weight w if for every closed point zj, of X, the eigenvalues
of Fy, after applying ¢, have complex absolute value (#r(20))"/%. Moreover, we say that a
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lisse Q-sheaf is mized (resp. t-mived) if it admits a filtration of lisse Q,-sheaf with pure (resp.
(-pure) successive quotients.

1.2.3 Overconvergent F-isocrystals

1.2.3.1. Let k be a perfect field. We denote by W (k) the ring of p-typical Witt vectors over k
and by K (k) its fraction field. For every s € Z.(, we denote by Z,s the ring of Witt vectors
over [F,« and by Qg its fraction field. We suppose chosen compatible morphisms Q. — @p.

Let X, be a smooth variety over k, we denote by Isoc!(X,/K (k)) the category of Berthelot’s
overconvergent isocrystals of Xy over K (k). See [Ber96a] for a precise definition and [Cre87] or
[Ked16] for a shorter presentation. The category Isoc'(Xo/K (k)) is a K (k)-linear rigid abelian
®-category, with unit object OE@ that we will denote by K (k)x,. The endomorphism ring of
K(k)x, is isomorphic to K (k)®, where s is the number of connected components of X.

We will recall now the notation for the extension of scalars and the Frobenius structure of
overconvergent isocrystals. We mainly refer to [Abel8, §1.4].

1.2.3.2. For every finite extension K (k) < K we denote by Isoc'(Xy/K(k))x the category of
K-linear overconvergent isocrystals of Xy over K (k), namely the category of pairs (M, ), where
M € Isoc! (X, /K (k)) and v : K — End(M) is a morphism of (noncommutative) K (k)-algebras,
called the K-structure. The morphisms in Isoc'(X,/K (k))x are morphisms of overconvergent
isocrystals over K (k) which commute with the K-structure. We will often omit 7 in the notation.

For (M,7),(M',+) € Isoc!(Xy/K (k))x, their tensor product in Isoc'(Xo/K (k))k is de-
fined in the following way. We start by considering the tensor product of the two isocrystals
M@ M’ in Isoc' (X, /K (k)). On this object K acts via v ®id and id ®7' at the same time. We
define N as the greatest quotient of M ® M’ such that the two K-structures agree. Then we
define ¢ as the unique K-structure induced on N. Finally, we define (M, )& (M’,v') := (N, 9).

1.2.3.3. If K C L are finite extensions of K (k) and {ax, ..., a4} is a basis of L over K we define
a functor of extension of scalars

(=) @k L : Isoc'(Xy/K(k))x — Isoct(Xo/K(k))L.

An object (M, ) € Isoc! (X, /K (k))k is sent to (@le M, 6), where {M;}1<i<q are copies of
M and ¢ is defined as follows. We denote by ¢; the inclusion of M; in the direct sum. For every
acland 1 <i<d, we write a - a; = ijl a;;a;, where a;; € K. The restriction of §(a) to
M, is defined as Z;.lzl t; 0 y(a;;). Different choices of a basis of L over K induce functors that
are canonically isomorphic.
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1.2.3.4. For every finite field k, and for every finite extension K (k) C K we choose as a unit ob-
ject of Isoc' (Xo/K (k))k, the object Ky, := K (k)x, ® K. We have endowed Isoc'(X/K (kx,))x
with a structure of a K-linear rigid abelian ®-category. When X is geometrically connected
over k, the endomorphism ring of Ky, is isomorphic to K.

1.2.3.5. We want to define now the inverse image functor for overconvergent isocrystals with
K-structure. Suppose given a commutative diagram

YE)#XO

| |

Spec(F ) —— Spec(F,s)

that we will denote by fy : YO/Fqsf — Xo/Fg with 1 < s <t.

We have a naive inverse image functor fi : Isoc’(X, /@qs)@qs/ — Isoc' (Y /Q,) sending
(M,7) to (ff M, fi), where f"M is the inverse image of M to Y as an overconvergent
isocrystal over Qs and fj v is the Q,-structure on fof M, given by the composition of v with
the morphism End(M) — End(fyj M), induced by f;". The functor f; does not commute in
general with the tensor structure, thus one needs to “normalize” it.

The isocrystal fi" M is endowed with two Qs -structures. One is fo7y, the other is the
structural Q. -structure as an object in Isoc! (Y /Q,). We define f5(M,v) as the greatest
quotient of f;"(M,) such that the two Qo -structures agree. We equip it with the unique
induced Q,v-structure. For every finite extension Q. C K, this construction extends to a
functor f : Isoc(Xo/Qqs )x — Isoc!(Yy/ Q,+ )x- This will be the inverse image functor we will
mainly use.

1.2.3.6. We denote by F' : X, — X, the g-power Frobenius®. Let K be a finite extension for
Q. For every M € Isoc'(X,/Q,)x and every n € Zg, an isomorphism between (F™)*M and
M will be an n-th Frobenius structure of M. We denote by F-Isoc'(X,/Q,)x the category
of overconvergent F-isocrystals with K-structure, namely the category of pairs (M, ®) where
M € Tsoc'(Xy/Q,)x and @ is a 1-st Frobenius structure of M, called the Frobenius structure
of the F-isocrystal. The morphisms in F-Isoc'(X,/Q,)x are the morphisms in Isoc’(Xy/Q,)x
that commute with the Frobenius structure. For every positive integer n, the isomorphism

P, :=Po F*Po---o(F" )P

3The letter F will denote two different types of Frobenius endomorphisms, depending if we are working with
lisse sheaves or isocrystals.
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will be the n-th Frobenius structure of (M, ®). The category F-Isoc'(X,/Q,)x is a K-linear
rigid abelian ®-category. In this case, if X, is connected, but not necessarily geometrically
connected, the ring of endomorphisms of the unit object is isomorphic to K.

When X, is a smooth variety over Fgs, for every finite extension Q, C K, the category
of K-linear isocrystals over Qs with s-th Frobenius structure is equivalent to the category
F-TIsoc' (Xo/Q,)x (see [Abel8, Corollary 1.4.11]). We will use this equivalence without further
comments.

1.2.3.7. We extend the functor of the extension of scalars to F-isocrystals, imposing (M, ®) @k
L := (M®gL,®®kidy), where ® ® idy, is a map from F*FM QgL = F*(M®kL) to M kL.

Let fo : Yo — Xy be a morphism, for every extension Q, C K, the functor f; defined in
§1.2.3.5 for K-linear overconvergent isocrystals extends to a functor

fo: F—IsocT(Xo/@q)K — F—IsocT(YO/@q)K

which sends (M, ®) to (fiM, f5(®)). If (Xo,z) is a smooth pointed variety, geometrically
connected over F .« and K is a finite extension of Qg+, the natural morphism fy : Xo/Fp —
Xo/F,, induces a functor

U, x : F-Isoc'(X,/Q,)x — Isoc'(X,/Q,)x — Isoc!(Xo/Qys )i

which sends (M, ¥) to fiM. We denote the objects in F-Isoc'(X,/Q,)x with a subscript g
and we will remove it when we consider the image by ¥, x in Isoc!(Xy/Qqs )k

1.2.3.8. For every finite extension K (k) C K, the category Isoc!(Spec(k)/K (k))x is equivalent
to Veck as a rigid abelian ®-category. Moreover, if k C k' is an extension of finite fields, and
K(K') C K, the Tannakian category F-Isoc'(Spec(k’)/K (k))x is equivalent to the category of
(finite-dimensional) K-vector spaces endowed with an automorphism.

1.2.3.9. Let (X, ) be a smooth pointed variety, geometrically connected over F . Let E\ be
a finite extension of Qg in Q,. The category Isoc’(Xo/Q,: ), admits a fibre functor over some
finite extension of E\. Assume that deg(zo) = n. Let iy : 2g/Fpn — Xo/F,s the immersion of
the closed point zy in X (notation as in §1.2.3.5). Let Eﬁ\xo) be the compositum of Ey and Qgn
in Q,. Then the functor

® E(»‘Co) .
we.m, : Isoc! (Xo/Qqs) i, i SN IsocT(Xo/Qqs)EizO) 2, IsocT(a;o/Qqn)EigEO) o~ VecE;z())

is a fibre functor, as proven in [Cre92a, Lemma 1.8]. This means that for every finite extension
E\ of Qg the category Isoc' (X,/ Qq) g, is Tannakian. Moreover, the composition of U, 5, with
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W, is a fibre functor for F-Isoc!(X,/Q,) g, over E&xo), that we will denote by the same symbol.

Thus, for every finite extension Q, C F), the category F-Isoc'(X,/ Q,)E, is Tannakian.*

1.2.3.10. Let ig : x5 — X, be the immersion of a closed point of degree n. Let K be a
finite extension of @, and L a finite extension of K which contains Q. For every M, €
F-TIsoc'(X,/Q,)x, we denote by F, the n-th Frobenius structure of if(Mo) ®g L. This will
be the (linearized geometric) Frobenius of My at zf,. By §1.2.3.8, it corresponds to a linear
automorphism of an IL-vector space. The characteristic polynomial

Py (Mo, 1) := det(1 — tFy |ig(Mo) @k L) € K[t]

will be the (Frobenius) characteristic polynomial of My at zj. It is independent of the choice
of i and L.

In analogy with lisse sheaves, we say that overconvergent F-isocrystals are pure, t-pure,
mixed or (-mixed, if they satisfy the similar conditions on the eigenvalues of the Frobenii at
closed points.

1.3 Generalities

1.3.1 Coefficient objects

Let Xy be a smooth variety over F,. Following [Ked18], we use a notation to work with lisse
sheaves and overconvergent F-isocrystals at the same time.

Definition 1.3.1.1 (Coefficient objects). For every prime ¢ # p and every finite field extension
K/Qy, a K-coefficient object will be a Weil lisse K-sheaf. If K is a finite field extension of Q,
a K-coefficient object will be an object in F-Isoc'(X,/Q,)x. For a field K of one of the two
kinds, we denote by Coef(Xy,K) the category of K-coefficient objects. For every object in
Coef (X, K), the field K will be its field of scalars. A coefficient object will be a K-coefficient
object for some unspecified field of scalars K. For every prime ¢, the 2-colimit of the categories
Coef(Xy, Ey) with E\ C Q, will be the category of Q,-coefficient objects and it will be denoted
by Coef(X,,Q,).

We will also work with a category of geometric coefficient objects. This is built from the cat-
egory of coefficient objects by forgetting the Frobenius structure. To get Tannakian categories,
in this case, we will put an additional assumption on the fields of scalars.

“The category F-Isoc'(X(/Q,)z, is actually Tannakian even when E) is just a finite extension of Q,. For
simplicity, in what follows, we will mainly work with finite extensions of Qgs, in order to make Isoc! (Xo0/Qqys ) E,
a Tannakian category.
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Notation 1.3.1.2. From now on in §1, except when explicitly stated otherwise, (Xo, ) will be
a smooth pointed variety over F,, geometrically connected over Fys for some s € Z-.

Definition 1.3.1.3 (Admissible fields). We say that a finite extension of Q- is a p-adic admis-
sible field (for Xy). To uniformize the notation, when ¢ is a prime different from p, we also say
that every finite extension of Q, is an (-adic admissible field. We will refer to this second kind
of fields as étale admissible fields. When FE) is an admissible field, we will say that the place A
is admissible.

Definition 1.3.1.4 (Geometric coefficient objects). For every p-adic admissible field K, we have
a functor of Tannakian categories ¥, x : F-Isoc'(X,/Q,)x — Isoc'(Xy/Q,)x which forgets
the Frobenius structure (see §1.2.3.7). We denote by Coef(X® K) the smallest Tannakian
subcategory of Isoc'(X,/Q, )k containing the essential image of ¥, x. We will say that the
category Coef (X KK) is the category of geometric K-coefficient objects (with respect to x).

When K is an étale admissible field, we have again a functor ¥,x : Weil(Xy, K) —
LS(X® K) which forgets the Frobenius structure (see §1.2.2.2). The category of geometric K-
coefficient objects (with respect to x) will be the smallest Tannakian subcategory of LS(X®) K)
containing the essential image of ¥, x and it will be denoted by Coef(X®) K).

For every ¢, the category of geometric Q,-coefficient objects will be the 2-colimit of the
categories of geometric F\-coefficient objects when FE) varies among the admissible fields for
Xy in Q,. It will be denoted by Coef(X® Q,) and ¥, 5, will be the functor induced by the
functors W, k. If & is a @g—coefﬁcien’c object, we drop the subscript ( to indicate \Ilm@Z (&), thus
we write £ for \IJZV@Z(SO). When X is geometrically connected over F, we drop the superscript
() in the notation for the categories of coefficient objects, as they do not depend on z.

Definition 1.3.1.5 (Geometric properties). Let & a Q,-coefficient object &. We say that & is
geometrically semi-simple, geometrically trivial or geometrically finite if the associated geometric
coefficient object £ is semi-simple, trivial or finite in Coef(X®, Q,). Notice that although the
object £ depends on x, these properties for £ depends only on &.

Definition 1.3.1.6 (Cohomology of coefficient objects). Let & be an E\-coefficient over Xj.
If & is a lisse sheaf, we denote by H'(X® &) (resp. H (X, E)) the M-adic étale cohomology
(resp. the A-adic étale cohomology with compact support) of X® with coefficients in £ and
by H'(Xo,&) (resp. Hi(Xy,&)) the fixed points by the action of F* on H(X®) &) (resp.
H!(X® £)). When E, is p-adic, we denote by H*(X® &) (resp. H}(X®, &)) the rigid coho-
mology (resp. the rigid cohomology with compact support) of X, with coefficients in €. We
also denote by H'(Xy, &) and H'(Xy, &) the respective Ey-vector spaces of fixed points by the
action of the g®*-power absolute Frobenius F* of Xj.

Remark 1.3.1.7. For both kinds of coefficient objects, if Ej x is the unit object of
Coef(X@ E,), the E\-vector space Hom(E) x, &) is canonically isomorphic to H(X® ).
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We also have a canonical isomorphism between Hom(FE), x,, &) and H°(X,, &), where E) x, is
the unit object in Coef(Xy, E)).

Proposition 1.3.1.8. Let (Xy, x) be a smooth connected pointed variety, geometrically connected
over Fys. The functor (F*)* is a ®-autoequivalence of Coef(X®) E\). In particular, when
E/(\xo) = B\, the pair (Coef(X @) E\), (F*)*) is a neutral Tannakian category with Frobenius,
as defined in A.1.1.

Proof. For lisse sheaves the result is well-known. In the p-adic case see [Abel8, Remark in
§1.1.3] or [Laz17, Corollary 6.2] for a proof which does not use arithmetic Z-modules. O

Corollary 1.3.1.9. Any irreducible object in Coef (X @) Ey) admits an n-th Frobenius structure
for some n € Zy.

Proof. By definition, an irreducible object F in Coef(X®), E,) is a subquotient of some geomet-
ric coefficient object £ that admits a Frobenius structure. By Proposition 1.3.1.8, the functor
(F*)* is an autoequivalence, thus it permutes the isomorphism classes of the irreducible sub-
quotients of £. This implies that there exists n > 0 such that (F"*)*F ~ F, as we wanted. [

Remark 1.3.1.10. When X is geometrically connected over F,, the category Coef(X,Q,)
is the same category as the one considered by Crew to define the fundamental group at the
end of §2.5 in [Cre92a]. A priori, this category is not equivalent to the one considered by Abe
to define, for example, the fundamental group in [Abel8, §2.4.17]. By Corollary 1.3.1.9, the
category Coef (X, Q,) is a Tannakian subcategory of the one defined by Abe.

Definition 1.3.1.11. A K-coefficient object is said constant if it is geometrically trivial, i.e.
if after applying ¥, x it becomes isomorphic to a direct sum of unit objects. We denote by
Coef (X0, E)) the (strictly) full subcategory of Coef(Xy, E\) of constant Ey-coefficient ob-
jects. It is a Tannakian subcategory of Coef(Xy, E)) which does not depend on z. We define
the category of constant Q,-coefficient objects, as the 2-colimit of the categories of constant
E\-coefficient objects.

1.3.1.12. For every prime ¢, the category Coef(Spec(F,),Q,) is canonically equivalent to the

category of Q,-vector spaces endowed with an automorphism. For every a € @; we define @éa)
as the rank 1 coefficient object over Spec(IF,) associated to the vector space Q, endowed with
the multiplication by a.

Definition. Let px, : Xo — Spec(F,) be the structural morphism. For every Q,-coefficient
object & and every a € @Z , we define

£ = & © p, <@§a)>

as the twist of & by a. A twist is algebraic if a is algebraic.
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Remark 1.3.1.13. The operation of twisting coefficient objects by an element a € @Z gives an
exact autoequivalence of the category Coef (X, Q,). In particular, for every coefficient object,
the property of being absolutely irreducible is preserved by any twist.

1.3.1.14. For every Q,-coefficient object & of rank r, we can associate at every closed point
of X the (Frobenius) characteristic polynomial of & at o, denoted Py (&, t) = 1+ait+...a,t",

—r—1 —X
where (ay,...,a,) €Q, xQ,.

Definition. For every coefficient object &, the Frobeq,z'us characteristic polynomial function
associated to & is the function of sets Py, : | Xo| = Q, x @, that sends z to the coefficients
of Pxo(go, t)

Definition 1.3.1.15. Let ¢ be a prime number, K a field endowed with an inclusion 7 : K < Q,.
We will say that a Q,-coefficient object & is K-rational with respect to T if the characteristic
polynomials at closed points have coefficients in the image of 7. A K-rational coefficient object
will be the datum of 7 : K < Q, and a Q,-coefficient object that is K-rational with respect to
7. We will also say that an FE\-coefficient object is E-rational if it is E-rational with respect
to the natural embedding £ < E) C Q,. We say that a coefficient object is algebraic if it is
Q-rational for one (or equivalently any) map 7: Q < Q,. A coefficient object is said p-plain if
it is algebraic and all the eigenvalues at closed points are p-plain (see 1.2.0.2 for the notation).

We can compare two K-rational coefficient objects with different fields of scalars looking at
their characteristic polynomial functions.

Definition 1.3.1.16. Let & and F; be two coefficient objects that are K-rational with respect to
7 and 7’ respectively. We say that & and Fy are K-compatible if their characteristic polynomials
at closed points are the same as polynomials in K[¢], after the identifications given by 7 and 7’

Our general aim in §1 will be to convert the numerical data provided by the Frobenius
characteristic polynomials at closed points to structural properties of the coefficient objects. As
an example, we prove the following general statement on Weil lisse sheaves.

Proposition 1.3.1.17. Let ¢ be a prime different from p and let Vy be a Weil lisse Q,-sheaf on
Xo. If all the eigenvalues of the Frobenius at xo are {-adic units, then Vy is an étale lisse sheaf.
In particular, p-plain lisse sheaves are étale.

Proof. The property on the eigenvalues is preserved after an extension of the base field. Thus,
we can assume that xg is a rational point, because étale lisse sheaves satisfy étale descent. Let
po be the (-adic representation of W (X, z) associated to Vy and denote by 1y € GL(V,) the
image of pg. Write II for the image of 7$'(X,x) via py. The group Iy is generated by IT and
po(7y), where «y is some element in F,,.
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Let I' be the closure in GL(V,) of the group generated by po(7y). By the assumption on the
eigenvalues of pg(7), the topological group I' is compact, hence profinite. Moreover, the group
I normalizes II, so that IT-I' C GL(V,) is a profinite group. By construction, Il is contained in
the profinite group II - I'. Therefore, the ¢-adic representation py factors through the profinite
completion of W (Xy, z), which is 7¢( Xy, ). This concludes the proof. O

1.3.2 Monodromy groups

We introduce now the main characters of §1: the fundamental groups and the monodromy groups
of coefficient objects. They will sit in a fundamental exact sequence, which is the analogue of the
sequence relating the geometric étale fundamental group and the arithmetic étale fundamental
group. We have presented this exact sequence for general neutral Tannakian categories with
Frobenius in §A.2.

1.3.2.1. For every étale admissible field F, we take the fibre functor
Wg By - Weil(Xo, E,\) — VecEA

attached to x, which sends a lisse sheaf ), to the stalk V,. When E, is a p-adic admissible field,
we have defined in §1.2.3.9 a fibre functor for Isoc'(X,/Qgs )z, over Eim‘)), denoted by w, g,. For

symmetry reasons, when F) is an étale field, we set Eg\%) := F)\. Thus for every admissible field
E)\, we have a fibre functor w, g, of Coef(X®) E)) over Eym). We will denote with the same
symbol the fibre functor induced on Coef(Xy, E)). As the fibre functors commute with the
extension of scalars, for every ¢ we also have a fibre functor over Q, for Q,-coefficient objects.

We will denote it by w, g,

Definition (Fundamental groups). For every admissible field E), we denote by 7' (Xy, x) the
Tannakian group over E/(\xo) of Coef(Xy, Ey) with respect to w, g,. We write m' (X, z) for the
Tannakian group of Coef(X®), E\) with respect to the restriction of w, g,. The functor

U, g, : Coef(Xy, E\) — Coef(X™@ E,)

induces a closed immersion 7 (X, z) < 77(Xo, z). We also denote by 77 (Xp, 2)¢! the quotient
of m}(Xo, x), corresponding to the inclusion of Coef, ., (Xy, Ey) in Coef(Xy, E)).

Remark 1.3.2.2. Suppose that ngO) = F), then there exists an isomorphism of functors
N Weg, = Wep, © (F°)". For lisse sheaves, this is induced by the choice of an étale path
between x and the F-point over x with respect to F* : X — X. In the case of overconvergent
F-isocrystals, this is constructed in [Abel8, §2.4.18]. Let us briefly recall it.
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Let iy : g — X be the inclusion of zg, the closed point underlying x. Let o be the lift
to Qgn of the ¢®*-power Frobenius of Fyn, where n is the degree of zy. For every overconvergent
F-isocrystal M on X, we define

m :ig (M) @gpuer, Bx = (Qgn ®ox gy 15 (Mo)) Qgnes, B,

as the isomorphism which maps m®e to 1@m®e. The functor ig is the naive pullback defined in
§1.2.3.5. The isomorphisms 7,4 induce an isomorphism of fibre functors 7 : w, g, = w, g, o(F*)*.
Thanks to this and Proposition 1.3.1.8, one can define a Weil group for coefficient objects over
the field E) (see §A.1.4).

1.3.2.3. Every E\-coefficient object & generates three F)-linear Tannakian categories, the arith-
metic one (&) C Coef(Xy, E)), the geometric one (£) C Coef(X® E)) and the Tannakian
category of constant objects (Eg)est € (Eo). We will consider these categories endowed with the
fibre functors obtained by restricting w, g, .

Definition. (Monodromy groups) We denote by G(&y, x) the (arithmetic) monodromy group of
&, namely the Tannakian group of (£y). The geometric monodromy group of & will be instead
the Tannakian group of (£) and it will denoted by G(&, x). We will also consider the quotient
G(&, x) — G(&y,x)*!, which corresponds to the inclusion (£y)est € (Ey). These three groups
are quotients of the fundamental groups defined in §1.3.2.1.

Remark 1.3.2.4. When V) is a lisse sheaf and py : W(Xy,2) — GL(V,) is the associated
(-adic representation, then G(V,z) is the Zariski-closure of the image of pg and G(V,x) is
the Zariski-closure of po(m$*(X,z)). When M is an overconvergent F-isocrystal, G(M, ) is
the same group defined by Crew in [Cre92a] and denoted by DGal(M, x). This group is even
isomorphic to the group DGal(M, z) which appears in [AE16]. This agrees with our previous
Remark 1.3.1.10.

Remark 1.3.2.5. As X is connected, the étale fundamental groups associated to two differ-
ent F-points of X, are (non-canonically) isomorphic. Hence, in the case of lisse sheaves, the
isomorphism class of the monodromy groups does not depend on the choice of x. For overcon-
vergent F-isocrystals, by the result of Deligne in [Del90], the monodromy groups associated to
two different F-points become isomorphic after passing to a finite extension of E). We do not
know any better result in this case.

Let us present now the fundamental exact sequence of X attached to some admissible place
A. The sequence is a generalization of the one proven in [Pall5, Proposition 4.7].

Proposition 1.3.2.6. Let (Xo,x) be a smooth pointed variety, geometrically connected over
Fys and let X be an admissible place for X, such that Eg\mo) = F,.
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(i) The natural morphisms previously presented give an ezact sequence

1— W{\(X, T) — ﬂ{\(Xo,x) — Wi\(XO,:U)CSt — 1.

(ii) For every E\-coefficient object & and every F € (E), there exists Gy € (&) such that
FCg.

(iii) For every Ex-coefficient object &, the exact sequence of (i) sits into the following commu-

tative diagram with exact rows and surjective vertical arrows

1 —— m(X,z2) —— 7(Xo,2) —— 7 (Xp, 2) —— 1

| ! }

1 —— G(E,2) — G(E,z) — G(Ep,z)™t — 1.

)cst

(iv) The affine group scheme m1(Co,wp is isomorphic to the pro-algebraic completion of Z

over K and G(&y, )" is a commutative algebraic group.

(v) The affine group scheme w7 (X, )" is canonically isomorphic to m;(Spec(Fys),z). In
particular, the profinite group mo(m3(Xo, z)%) is canonically isomorphic to Gal(F/Fs).

Proof. By Proposition 1.3.1.8, the datum of (Coef(X® E)), (F*)*) is a neutral Tannakian
category with Frobenius, in the sense of Definition A.1.1. Thus by Proposition A.2.3 we get all
the parts from (i) to (iv).

For (v), let ¢x, : Xo — Spec(F,:) be the morphism induced by the F-point . We have a
inverse image functor

0x, : Coef(Spec(Fy), Ex) — Coef . (Xo, E)).

We want to construct a quasi-inverse gx,.. For every & € Coef (X, E)), we have a canonical
identification HO(X @, F*€) = HO(X®, £), thus the s-th Frobenius structure ®, of & induces
an automorphism of H°(X®) &) that we denote by gx,.(®s). We define ¢x,.(&) as the pair

(H(X™), &), gxy«(®s)) € Coef(Spec(Fye), Ey).
The functor gx,« is a quasi-inverse of g, thus ¢, induces an isomorphism
1 (Xo, 2)*" = 77 (Spec(Fys), ).

Since Coef(Spec(Fys), E) is canonically equivalent to Repy, (W (IF/F4)), the profinite group
o (77 (Xo, 2)°?) is canonically isomorphic to Gal(F/F,s). O
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1.3.3 Comparison with the étale fundamental group

1.3.3.1. We continue our analysis of the fundamental groups of coefficient objects focusing on
their groups of connected components. The statements of this section are fairly easy for lisse
sheaves and difficult for overconvergent F-isocrystals. In the latter case, Crew had already
studied the problem when X is a smooth curve [Cre92a]. Later in [Ete02], Etesse proved
that overconvergent isocrystals with and without Frobenius structure over smooth varieties of
arbitrary dimension satisfy étale descent®. This allows a generalization of Crew’s work.

Drinfeld and Kedlaya have presented in [DK17, Appendix B| how to perform such a gen-
eralization for the arithmetic fundamental group of overconvergent F-isocrystals. We will be
mainly interested in the extension of their result to the geometric fundamental group.

1.3.3.2. Let E\ be an admissible field for X, such that E/(\IO) = E,. Following [DK17, Remark
B.2.5], we define

Rep;, ™" (11" (Xo, 2)) := 2-lim Repp, (n{'(Xo, z)/H)
H

where H varies among the normal open subgroups of w$'(Xy, ). This category is endowed with
a fully faithful embedding
Repi, " (11" (Xo, 7)) — Coef(Xq, Ey).

The essential image is closed under subobjects. This functor induces a surjective morphism
7 (Xo, z) = 7( X, 1), where 7( Xy, ) denotes here the (pro-constant) profinite group scheme
over E) associated to the profinite group 7'( Xy, x). The subcategory

Repi, " (Gal(F/kx, )) € Repg, ™" (1" (Xo, ),
of representations which factor through Gal(F/kx,) is sent by the functor to Coef(Xy, E\)*".
Therefore, the composition of the morphisms

7T1\(X0, x) —> W‘ft(Xo, z) — Gal(F/kx,)

factors through 7 ( Xy, 2)**. By Proposition 1.3.2.6.(v), the induced morphism 77(Xy, 2)¢! —»
Gal(IF/kx,) is surjective with connected Kernel. Finally, the homotopy exact sequence for the
étale fundamental group and the fundamental exact sequence of Proposition 1.3.2.6.(i) fit in a
commutative diagram

1 —— (X, 2) —— 1 (Xo,2) —— 7 (Xo, 7)) —— 1

l l l (1.3.3.1)

1 —— 78X, 2) —— 7%(Xg,2) —— Gal(F/kx,) — 1.

5In the article he states the result for overconvergent F-isocrystals, but the same proof works without Frobe-
nius structure.
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The central and the right vertical arrows are the morphisms previously constructed. The left
one is the unique morphism making the diagram commutative.

Proposition 1.3.3.3. Let (Xy, z) be a smooth connected pointed variety. For every admissible
place \, we have a commutative diagram

1 —— mo(m} (X, 2)) —— mo(m}(Xo, 1)) —— mo(m7 (X, 7)) —— 1

ZLP leoo zl(pgst (1.3.3.2)

Il —— (X, 2) ——— 7{(Xo,x) —— Gal(F/kx,) — 1,

where the vertical arrows are isomorphisms and the rows are exact. The diagram is functorial
in (Xo, ), when it varies among the smooth connected pointed varieties.

Proof. The diagram is constructed applying the functor 7y to (1.3.3.1), hence it is functorial.
We start by showing that the upper row is exact. As the functor 7y is right exact, it is enough to
prove the injectivity of the morphism mo(m (X, ) — mo(77 (X0, 2)). We first extend the field of
scalars to Q,. The 7, of the Tannakian group of a Tannakian category is the Tannakian group
of the subcategory of finite objects. Thus, we have to prove that for every absolutely irreducible
finite geometric Q,-coefficient object £, there exists a finite object F, € Coef(Xy, Q,), such
that £ is a subquotient of F.

By Lemma A.2.2, there exists F € Coef(Xy,Q,) such that &£ is a subobject of F’. As & is
absolutely irreducible, we can even assume F{ to be absolutely irreducible. In particular, there
exist gi,...,9n € G(F5,7)(Q,) such that w,g,(F0) = > i1 9i(w,5,(€)). The algebraic group
G(F',x) is normal in G(Fg, ), thus the vector spaces gi(w, g,(£)) are G(F', z)-stable for every
i. In addition, their monodromy groups as representations of G(F’, z) are all finite, as they are
conjugated to the monodromy group of £. Therefore F’, being a sum of finite objects, is a finite
object.

Let W (Fj, z) be the Weil group of (F'), as defined in §A.1.4. Since G(F’,z) is finite, there
exists n € Zwo such that (F™)* acts trivially on it. If p’ is the representation of G(F', x)
associated to F', then (F™)*p' = p’. Thus p := @?;J(Fi)*p/ can be endowed with a Frobenius

structure ) .
o F* (@(FZ)*/)/) e @(Fl)*pl
i=0 i=0
such that, for every 1 < i < n — 1, the restriction of ® to F* ((F*)*p') is the canonical isomor-
phism F* ((F")*p') = (F™1)*p’. The pair (p, ®) induces a representation of W (F}, r) with finite
image and thus a finite coefficient object Fy. The original geometric coefficient object £ is a
subobject of F, therefore Fy satisfies the properties we wanted.
Finally, we prove that the vertical arrows of (1.3.3.2) are isomorphisms. The morphism @5
is an isomorphism by Proposition 1.3.2.6.(v). By diagram chasing, it remains to prove that ¢y is

28



an isomorphism. For lisse sheaves, this is quite immediate. If a lisse sheaf has finite arithmetic
monodromy group, its associate f-adic representation factors through a finite quotient of the
Weil group of Xjy. In the p-adic case one can prove that ¢g is an isomorphism using [Kedl11,
Theorem 2.3.7], as it is explained in [DK17, Proposition B.7.6.(i)]. O

Proposition 1.3.3.4. Let & be an E\-coefficient object on (X, x).

(i) For every finite étale morphism fy : (Yo,y) — (Xo,x) of pointed varieties, after extending
E\ to an admissible field for Yy, the natural maps G(f;&o,y) — G(Eo, x) and G(f*E,y) —

G(&,x) are open immersions.

(ii) There exists a choice of fo : (Yo,y) = (Xo,x) such that, after extending E) to an admissible

field for Yy, the natural maps of the previous point induce isomorphisms G(fi€o,y) —
G(Ey,2)° and G(f*E,y) = G(E,x)°.

Proof. We notice that by Proposition 1.3.3.3 the group of connected components of the arith-
metic monodromy group (resp. geometric monodromy group) are quotients of the arithmetic
étale fundamental group (resp. geometric étale fundamental group), thus (i) implies (ii).

When & is a lisse sheaf, (i) is well-known. If &, is an overconvergent F-isocrystal, the result
on the arithmetic monodromy groups is a consequence of [DK17, Proposition B.7.6.(ii)]. It
remains to prove (i) for the geometric monodromy groups of overconvergent F-isocrystals. It
is enough to treat the case when Y, — X is a Galois cover with Galois group H and Y| is
geometrically connected over F,. As Y| is geometrically connected over F,, the group H acts
on (f*€) via Ey-linear autoequivalences. Let (f*€) be the category of H-equivariant objects
in (f*€). After possibly extending F), we can find isomorphisms of fiber functors between
wy, g, and wy(y), g, for every h € H. A choice of these isomorphisms induces an action of H on
G(fEy).

By [Ete02], overconvergent isocrystals with and without F-structure satisfy étale descent.
Therefore, there exist fully faithful embeddings (£) < (f*€) and (f*E)" — Isoc' (Xo/Q,)z,-
The former embedding induces a morphism on the Tannakian groups ¢ : G(f*€,y) x H —
G(&, ). By definition, the subcategory (£) C Isoc!(X/Q,)g, is closed under the operation of
taking subquotients. Thus, the same is true for (£) C (f*€)H. This proves that ¢ is surjective,
which in turn implies that G(f*€,y) has finite index in G(&, x). N

Corollary 1.3.3.5. Let & be a coefficient object on (Xo,x). For every finite étale morphism
fo: Yo,y) — (Xo, ) of pointed varieties, & is semi-simple (resp. geometrically semi-simple)
if and only if f5& is semi-simple (resp. geometrically semi-simple).

Remark 1.3.3.6. We will see later a variant of Corollary 1.3.3.5 in Corollary 1.3.7.10. In
that case the result is obtained as a consequence of the theory of weights and the Langlands
correspondence.
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1.3.4 The Kiinneth formula

1.3.4.1. To prove Theorem 1.5.1.1 without using the existence of companions we will need the
Kiinneth formula for the fundamental group parameterizing geometric coefficient objects. For
simplicity we will prove it just for smooth connected projective varieties admitting a rational
point.

The main ingredient for the Kiinneth formula is the existence of a direct image functor for
smooth and proper morphisms of coefficient objects, that is a right adjoint of the inverse image
functor and that satisfies the proper base change. For lisse sheaves the classical direct image
has the desired properties. In the p-adic case the construction is more problematic. We will use
the direct image functor for arithmetic &-modules.

1.3.4.2. For every smooth projective variety X, we take the triangulated category with t-
structure of holonomic complexes D ;(X/Q,), see [Abel8, Definition 1.1.1]. We have chosen X
to be projective in order to make X, realizable (cf. loc. cit.). We also consider the category of
holonomic complexes with F-structure, denoted D; j(Xo/Q,), and for every p-adic admissible
field E) the categories enriched with Ej-structure, denoted D} (X/Q,)g, and D} (Xo/Q,) g,
[ibid. §1.4].

For every proper smooth morphism fy : Yy — X between smooth geometrically connected
projective varieties we dispose of adjuctions (f*, f,) and (fy, foi) of inverse and direct image
for holonomic complexes and holonomic complexes with F-structure respectively. They satisfy
the proper base change (see [ibid. §1.1.3] and [AC13, §1.3.14]).

We also consider the specialization functors

Sp ISOCT(XO/@Q)EA — Diol(X/Qq)Em SPo- F_ISOCT<XO/QQ)EA — Diol(XO/QQ)EA

defined in §1.1.3.11 and §2.4.15 of [Abe, op. cit.]. They are fully faithful functors commuting
with the inverse image functors.

In light of [Carl5, Théoréme 3.3.1], for every object M € Isoc!(Yy/Q,)r, and M, €
F-Isoc'(Yy/Q,)k,, the complexes f.$p, (M) and fo,8p,. (Mp) are in the essential image of
the specialization functors. Thus f; and fy, induce functors f, : Coef (Y, E)) — Coef(X, E))
and fo. : Coef(Yy, E\) — Coef (X, E,) that are right adjoints to f* and f; respectively.

Remark 1.3.4.3. We notice that when X, = Spec(FF,) and fj is the structural morphism, by
the adjuction property, for every M € Coef(Y, E)), the push f,.M € Coef(Spec(F), E,) is the
vector space of global sections of M.

Proposition 1.3.4.4. Let (Xo,z) and (Yy,y) be two smooth projective connected pointed vari-
eties such that xo and yo are rational points. For every admissible field E\, the projections of
Xo x Yy to its factors induce an isomorphism

MX xp Y,z xy) S (X, z) x 1Y, y).
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Proof. Let’s denote fy : Xy x Yy — Y, the projection to the second factor and gy : Xg X yo —
Xy X Yy the natural inclusion. The morphism gy induces a closed immersion Xy — Xy X Yy
that we denote by the same letter. If ¢ and ¢ are the morphisms induced by ¢g and f on the
fundamental groups classifying geometric coefficient objects, we obtain a sequence

1o m(X,2) S 10X xz Y,z x y) S 1w (Y,y) — 1

with 1 o @ trivial.
We want to use Theorem A.2.1 to show that it is an exact sequence. This will imply the
original statement. Let’s consider the sequence of functors

Coef (Y, Ey) 15 Coef(X xp Y, Ey) L Coef(X, E»).

The point (i) of Theorem A.1 (loc. cit.) follows from the existence of a section of fj, namely the
closed immersion of zy x Yy < Xy x Y;. The point (ii) and (c) are consequence of the existence
of a retraction for gy, given by the first projection Xy x Yy — Xj.

We want to show now that (a) and (b) are satisfied. Let’s consider the commutative square

X, x Yy —2 v,

]
Xo S BN Yo

where f§ is the restriction of fy to Xy x yo = Xy and g, is the closed immersion of y, in Yj.

Lemma 1.3.4.5. For every geometric Ey-coefficient object £, the adjuction morphism f*f.E —
& is injective. Moreover, after applying g*, the morphism g*f*f.€ — ¢*& makes g* f* f.E the
maximal trivial subobject of g*&.

Proof. To show the injectivity of the adjuction morphism, we use the fiber functors of the
Tannakian categories, associated to the rational points we are considering. Let G and H be the
affine group schemes m}(X xp Y, 2 x y) and 7}(Y, y). We know that the functor f* is equivalent
to the functor Res2 : Repg, (H) — Repg, (G), induced by ¢ : G — H.

As we have already proven that ¢ : G — H is surjective, the induction functor Indg :
Repy, (G) — Repg, (H) is well defined at the level of finite-dimensional representations and it
is the right adjoint of Resg. If we take N := Ker(1)), the functor Indyj sends V € Repy, (G) to
V¥ the induced representation of H on the subspace of V fixed by N.

By the uniqueness of the right adjoint of f*, the counit of (f*, f,) is isomorphic to the counit
of the adjunction (Res?,Ind$), induced by ¢ : G — H. If we apply the counit of (ResZ, Ind%)
to a representation V' € Repp, (G) we obtain the natural inclusion VN < V, in particular an
injective map. As a consequence, the maps induced by the counit of the adjunction (f*, f.) on
geometric coefficient objects are always injective.
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We show now the second part of the statement. As ¢* commutes with the fiber functors,
the morphism ¢* f* f.€ — ¢*& is injective. We have natural isomorphisms,

g fHE = P9  fE = [T flgE,
the second one given by the proper base change. At the same time we know that flg*E ~

HY(X, g*€), in the p-adic case thanks to the Remark 1.3.4.3. Thus ¢* f*f.£ ~ f*H°(X, g*€) is
the maximal trivial subobject of g*&, as we wanted. 0

We now verify (a). It is enough to show that if £ is an E\-geometric coefficient object of
X Xy Y such that ¢*€ is trivial, then f*f.£ ~ &. As ¢*& is trivial, by Lemma 1.3.4.5, we know
that ¢* f* f.€ and ¢*& are isomorphic, thus f*f.€ and £ have the same rank. Therefore we know
that the adjuction map f*f.£ — £ is an injective map between two objects of the same rank.
This means that it is an isomorphism.

To check (b) we have to show that for every geometric coefficient object £, there exists
F C &, such that ¢*F is the maximal trivial subobject of ¢g*£. We know by Lemma 1.3.4.5
that f*f.£, equipped with the adjunction morphism f*f.£ — £, is a subobject of £. We also
know by the lemma that after applying ¢*, the pullback g* f* f.€ becomes the maximal trivial
subobject of g*€. Thus F := f* f.€ fulfills the required property. ]

1.3.5 Rank 1 coefficient objects

This section is an interlude on rank 1 coefficient objects. One of the starting points of Weil II is
a finiteness result for rank 1 lisse sheaves, which is a consequence of class field theory. Thanks
to a reduction to unramified p-adic representations of the étale fundamental group, the same
statement is now known for overconvergent F-isocrystals of rank 1.

Theorem 1.3.5.1 ([Del80, Proposition 1.3.4], [Abel5, Lemma 6.1]). Let X be a smooth variety
over F,. Every E\-coefficient object of rank 1 is a twist of a finite E\-coefficient object.

Corollary 1.3.5.2. For every Q,-coefficient object & over Xy, there exist a positive integer n
and elements aq, ..., a, € Q; such that

gSs ~ @‘Fi(:(l)i)7
=1

where for each i the coefficient object F; o is irreducible with finite order determinant. If & is

E-rational, the elements ai,...,a, can be chosen so that a;' € E for every i, where r; is the
rank of F; .

Corollary 1.3.5.2 is important as it allows to reduce many statements on coefficient objects
to the case of absolutely irreducible coefficient objects with finite order determinant. It is
convenient to introduce the following definitions.
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Definition 1.3.5.3 (Types). We denote by ©, the torsion-free abelian group Q, //ise(Q,). The
elements of ©, will be called the (¢-adic) types. We will refer to the class of 1 in O, as the
trivial type. Let & be a Q,-coefficient object and let ay, ..., a, € @; be as in Corollary 1.3.5.2.
We denote by ©(&) the set of classes of ay,...,a, in ©,. They will be the types of &. Notice

that ©(&) is a set which depends only on &. We also denote by X(&) the group generated by
©(&) in O, and by X(&)g the Q-linear subspace X(&) ®z Q C 0, ®z Q.

Theorem 1.3.5.1 is used to prove a global version of Grothendieck’s local monodromy theorem,
usually known as the global monodromy theorem. Here the extension to F-isocrystals is due to
Crew.

Theorem 1.3.5.4 (Grothendieck, Crew). For every coefficient object &, the radical subgroup®
of G(E, x) is unipotent.

Proof. In the case of lisse sheaves, this is a theorem of Grothendieck, and it is proven in [Del80,
Théoreme 1.3.8]. In the p-adic case, Crew has proven the result when X is a smooth curve
[Cre92a, Theorem 4.9]. One obtains the result in higher dimensions replacing [ibid., Proposition
4.6] by Proposition 1.3.3.4 and [ibid., Corollary 1.5] by Theorem 1.3.5.1.

O

Corollary 1.3.5.5. Let & be a geometrically semi-simple coefficient object. The neutral com-
ponent G(E,x)° is a semi-simple algebraic group which coincides with the derived subgroup of

G(go, ZE)O.

Proof. By Cororollary 1.3.6.4, the geometric coefficient object £ is semi-simple, thus the al-
gebraic group G(&,x)° is reductive. Thanks to Theorem 1.3.5.4, this implies that G(&, z)° is
semi-simple, therefore

G, x)° =[G, x)°,G(E,x)°] C [G(&,x)°, G (&, x)°].
By Proposition 1.3.2.6.(iv), the quotient G(&y, z)°/G(E, x)° is commutative, hence
[G(&,x)°, G(Ey, )] C G(E, x)°.
This concludes the proof. [

Thanks to Theorem 1.3.5.1, one can even prove that, under certain assumptions, the neutral
component of the arithmetic monodromy group is semi-simple and it is equal to the neutral
component of the geometric monodromy group. These results can be found for lisse sheaves in
[Dril8, §3.6].

SFor us, the radical subgroup of an algebraic group will always be connected by definition.
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Proposition 1.3.5.6. For every coefficient object & and every connected finite étale cover

fo: (Yo,y) = (Xo,x), we have ©(&) = O(f;&o).

Proof. After taking semi-simplification and twists, we may assume that & is absolutely irre-
ducible with finite order determinant. In this case, the result is proven in [Dril8, Proposition
3.6.1] for lisse sheaves. The proof is the same for overconvergent F-isocrystals, as they satisfy
étale descent by [Ete02]. O

Proposition 1.3.5.7. Let & be a Q,-coefficient object. The following properties are equivalent.
(i) The algebraic group G(&y,x)° is semi-simple and it is equal to G(E,x)°.
(ii) The coefficient object & is semi-simple and has trivial types.

In particular, semi-simple coefficient objects with trivial types form a Tannakian subcategory of

Coef (X, Q).

Proof. If & is a coefficient object which satisfies (i), all the rank 1 coefficient objects in (&)

have finite order under tensor. Thus, if @2‘“ € (&) with a € Q, then a is a root of unity.
This implies that every type of & is trivial. Conversely, let us assume now that &, satisfies (ii).
Thanks to Proposition 1.3.3.4, there exists a connected finite étale cover fy : (Yo, y) — (Xo,x)
such that G(f;&,y) — G(&,2)° and G(f*E,y) = G(€,x)°. By Proposition 1.3.5.6, the inverse
image f;&y satisfies the same assumptions as &. We have reduced the problem to the case when
G(&, x) is connected. Thus it is enough to show that the center Z of G(&, x) is finite.

We notice that we may also assume & irreducible. Indeed, if & = Fy @& Gy and Z; and
Zy are the centers of G(Fy, ) and G(Gy,x) respectively, then Z C Z; x Z,. Therefore, if
Zy and Zy are finite the same holds for Z. Since Z is a group of multiplicative type, its
representation on w%@e(&)) decomposes as a direct sum of characters @;_, x;, where r is the
rank of &. By construction, the representation is faithful, thus xi,..., x, generate the group
of all the characters of Z. On the other hand, as & is irreducible, the characters x1,..., X, are
all isomorphic. Hence, by the assumption on the determinant, they are also finite. This implies
that the group of characters of Z is finite, hence Z is finite. This proves that G(&, x) is semi-
simple. By virtue of Proposition 1.3.2.6, the quotient G (&, z)/G(E, x) is a commutative group.
Since G(&, x) is semi-simple, this implies that G(&, x)/G(&, z) is finite, as we wanted. O

Corollary 1.3.5.8. Let & be a Q,-coefficient object.
(i) For every Fy € (&), we have O(Fy) C X(&).

(ii) There exists a canonical map X*(G(Ey, x)) — X(&) which becomes an isomorphism when
we tensor by Q.
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Proof. Tt is enough to prove (i) for the objects of the form 5™ @ (£))®" with m,n € N. In
addition, we may assume that & has only one type. Write & as ]-'éa) with Fo with trivial types.
By 1.3.5.7, the coefficient object F&™ @ (Fy)®" has trivial types. Therefore, £5™ @ (£))*"
has type (m — n)[a] € X(&). This proves part (i). Let X*(G(&,z)) — X(&) be the map
which associates to a rank 1 coefficient object its type. After tensoring by @, the map becomes
injective, as a rank 1 coefficient object of trivial type has finite order under tensor. To prove
the surjectivity we have to prove that for every type [a] of &, there exists n > 1 and a rank 1
coefficient object Ly € (&) of type [a"]. Since, by definition, there exists an irreducible object
Fo € (&) of type [a], we can pick Ly := det(Fp). O

1.3.6 Weights

In Weil IT Deligne introduced the theory of weights for lisse sheaves. The same theory is now
available for overconvergent F-isocrystals, thanks to the work of Kedlaya in [Ked06]. Here the
main theorem.

Theorem 1.3.6.1 (Deligne, Kedlaya). Let X be a smooth geometrically connected variety over
F, and & a t-mized coefficient object over Xy of t-weights < w. If a is an eigenvalue of F
acting on H*(X, &), then |u(a)| < qwt™/2,

Proof. For lisse sheaves this is the main result in [Del80]. For overconvergent F-isocrystals it is
proven by Kedlaya in [Ked06]. O

Corollary 1.3.6.2. Let
0—=>Fo—=& =G —0
be an exact sequence of coefficient objects such that Fy and Gy are t-pure of weights wy and ws
respectively.
(i) If wy > we — 1 the sequence splits geometrically.
(il) If wy # wo and the sequence splits geometrically, then it splits.
Proof. We have an exact sequence

0 — Hom(G, F)r — Ext'(Go, Fo) — Ext!(G, F)~.

The group Ext'(G, F) is equal to H'(X, F ® G") and the coefficient object Fy ® Gy is t-pure of
weight w; — wy. Thus, by Theorem 1.3.6.1, the weights of H' (X, F ® G¥) are at least equal to
wy — wy + 1. When w; > wy — 1, then H'(X, F ® GV) has positive weights, which implies that
F does not admit fixed points. Therefore in this case Ext'(G, F) vanishes, which implies ().
For (ii), suppose that the class associated to our extension is zero in Ext'(G, F), then it comes
from Hom(G, F)p. As Fo ® GJ does not admit -weight 0 by assumption, Hom(G, F)r = 0,
hence the result. [
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Corollary 1.3.6.3. For every t-mized coefficient object there exists an increasing filtration
0=W_1(&) S Wo(&) S -+ € Wal(&) =&

where for every 0 < i < n, the quotient W;(Ey)/Wi—1(&) is t-pure of weight w; and wy < wy <
cee K Wy, -

Corollary 1.3.6.4. Every t-pure coefficient object is geometrically semi-simple. Conversely,
every t-mized geometrically semi-simple coefficient object is a direct sum of -pure coefficient
objects.

1.3.6.5. For every Q,-coefficient object & on Xj, we can put together all the characteristic
polynomials at closed points and form a formal series

LXo(g()at) = H Px0(807tdeg(w0))_1 € QK[[tH

zo €| Xo|
This is called the L-function of &.

Theorem (Trace formula). If X, is geometrically connected over F,, for every coefficient object

&y we have
2d

Ly, (&0, t) = [ [ det(1 — Ft, Hi(X, )"

=1

Proof. For lisse sheaves, this is the classical Grothendieck’s formula, in the p-adic case see [ES93,
Théoreme 6.3]. O

Thanks to the theory of weight, this formula can be used to compare the global sections of
compatible coefficient objects. The theory of weights is needed to control the possible cancella-
tions between the factors of the numerator and the denominator.

Proposition 1.3.6.6 ([Laf02, Cor. VI.3|, [Abel8, Prop. 4.3.3]). Let Xy be a smooth geometri-
cally connected variety over IF, of dimension d. For every t-pure coefficient object &, of t-weight
w, the dimension of H°(X,E) is equal to the number of poles of «(L(Xo, &Y (d))), counted with
multiplicity, with absolute value ¢*/%. If we also assume & to be semi-simple, the dimension of

H°(Xo, &) is equal to the order of the pole of L(Xy, &Y (d)) at 1.

Proof. By Poincaré duality, the dimension of H°(X,€) is equal to the dimension of

H?4(X,£EV(d)) and the eigenvalues of F acting on H?¥(X,£V(d)) have -weight —a. At the
same time, by Theorem 1.3.6.1, for every 0 < i < 2d, the groups H:(X,EV(d)) have (-weights
less or equal than —a — 2d + i. The first part of the statement is then a consequence of the
trace formula (Theorem 1.3.6.5) applied to L(Xy, &) (d)). Indeed, by the observations on the

36



weights, the polynomial det(1 — Ft, H2¢(X,£Y(d))) is relatively prime to the numerator of the
L-function. Hence, the number of poles of t(L(Xy, &y (d))) with absolute value ¢*/? is equal to
deg(det(1 — Ft, H*(X,£V(d)))) = dim(H°(X, £)).

For the second part, we also use that by assumption the endomorphism F' acts semi-simply
on H°(X,&). In particular, the geometric and the algebraic multiplicities of the eigenvalue 1
are the same. Therefore, thanks to Poincaré duality, the dimension of H°(Xj, &) is equal to
the multiplicity of 1 of det(1 — Ft, H?¢(X,£V(d))). By the previous reasoning, this is the same
as the order of the pole of L(Xy, &) (d)) at 1. O]

Corollary 1.3.6.7. Let (X, ) be a smooth connected pointed variety over F,, let & and Fy be
E-compatible coefficients objects and suppose that & is t-mized. The following statements are
true.

(1) If & and Fy are geometrically semi-simple, then dim(H*(X® £)) = dim(H*(X®), F)).
(ii) If & and Fo are semi-simple, then dim(H(Xy, &)) = dim(H° (X, Fo))-

Proof. We may assume X to be geometrically connected over IF, by extending the base field.
Let Q, be the algebraic closure of the field of scalars of Fy. Let ¢/ : Q4 = C be an isomorphism
which agrees with + on E. Then Fj is //-mixed and its weights are equal to the ones of &. In
addition, if W.(&) and W,.(Fy) are the weight filtrations of Corollary 1.3.6.3, for each i the
quotients W;(&)/Wi—1(&) and W;(Fo)/Wi—1(Fo) are E-compatible. By the geometric semi-
simplicity assumption, it is enough to check (i) on these subquotients. But in this case, this
follows by Proposition 1.3.6.6. For (ii) we argue similarly. O

Proposition 1.3.6.8. Two t-mized Q,-coefficient objects with the same characteristic polyno-
mial functions have isomorphic semi-simplifications.

Proof. For étale lisse sheaf, this is the classical Cebotarev’s density theorem, explained in [Ser66,
Theorem 7|. For general lisse sheaf, one can take the semi-simplification and then take suitable
twists of the absolutely irreducible components, to reduce to the étale case, by [Del80, Propo-
sition 1.3.14]. In this case, the assumption that the coefficient object is t-mixed is not needed.
For the p-adic case the statement was proven by Tsuzuki using Proposition 1.3.6.6, see [AbelS8,
A.3]. His proof works for -mixed lisse sheaves as well. O

Remark 1.3.6.9. We will see later that thanks to the Langlands correspondence, it is possible
to show that every coefficient object is t-mixed (Theorem 1.3.7.6). Therefore, Proposition 1.3.6.8
applies to every coefficient object.
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1.3.7 Deligne’s conjecture

We are ready to present Conjecture 1.1.1.1 for arbitrary coefficient objects. The extension of the
statement to overconvergent F-isocrystals was firstly proposed by Crew in [Cre92a, Conjecture
4.13]. This corresponds to the choice of the category of overconvergent F-isocrystals as a possible
candidate for Deligne’s “petits camarades cristallins”.

Conjecture 1.3.7.1. Let X, be a smooth variety over Fy, let £ be a prime number and let &, be
an absolutely irreducible Q,-coefficient object whose determinant has finite order. The following
statements hold.

(i) & is pure of weight 0.
) There exists a number field E C Q, such that & is E-rational.
(iii) & is p-plain.
)

If E is a number field as in (ii), then for every prime ¢’ (even ¢’ ={ or {' = p) and for
every inclusion 7 : E < Qg , there exists an absolutely irreducible Qu-coefficient object,
E-rational with respect to T, which is E-compatible with &.

We shall see that the conjecture, except part (iv’), is now known to be true. The missing
case of (iv’) is when ¢/ = p and X, has dimension at least 2. We will postpone the discussions
on the analogue of Conjecture 1.1.1.1.(iv) in §1.3.8. We first recall an equivalent form of (i),
which for lisse sheaves is [Del80, Conjecture 1.2.9].

Conjecture 1.3.7.2. Every Q,-coefficient object on X is t-mized.
Proposition 1.3.7.3. Conjecture 1.3.7.1.(i) is equivalent to Conjecture 1.3.7.2.

Proof. We first prove that Conjecture 1.3.7.1.(i) implies Conjecture 1.3.7.2. By taking Jordan—
Holder filtrations, Conjecture 1.3.7.2 reduces to the case of irreducible Q,-coefficient objects.
Let & be an irreducible Q,-coefficient objects. Thanks to Corollary 1.3.5.2, it is isomorphic to
]:éa), where Fj is an irreducible Q,-coefficient object with finite order determinant and a € @Z .
By Conjecture 1.3.7.1.(i), the coefficient object Fy is t-pure of weight 0, thus & is t-pure of
t-weight 2log,(|¢(a)]). This gives the desired result.

Conversely, assume Conjecture 1.3.7.2 and let & be a Q,-coefficient object with finite order
determinant. Then, & is «-pure for every isomorphism ¢ : Q, = C. Since its determinant has
finite order, all the (-weights of &, are 0. This shows that & is pure of weight 0 (in particular,
& is algebraic). O

When X is a smooth curve, Conjecture 1.3.7.1 is a consequence of the Langlands correspon-
dence for GL,, over function fields, and the Ramanujan—Petersson conjecture. The Langlands
correspondence for lisse sheaves and the Ramanujan—Petersson conjecture was proven by L.
Lafforgue. Abe proved later the Langlands correspondence for overconvergent F-isocrystals.
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Theorem 1.3.7.4 ([Laf02, Théoreme VIL.6], [Abel8, §4.4]). If X, is a smooth curve, Conjecture
1.3.7.1 and Conjecture 1.3.7.2 are true.

The extension of the results to higher dimensional varieties is performed via a reduction to
curves. One of the key ingredients is a Lefschetz theorem for coefficient objects.

Theorem 1.3.7.5 (Katz, Abe-Esnault). Let Xy be a smooth geometrically connected variety
over F,. For every lisse sheaf & over Xy and every reduced finite closed subscheme Sy C X,
there exists a geometrically connected smooth curve Cy and a morphism fo : Co — Xo with
a section Sy — Cy, such that the inverse image functor () — (f;&o) is an equivalence of
categories. The same is true when & is a t-pure overconvergent F'-isocrystal.

Proof. For lisse sheaves see [Kat99, Lemma 6 and Theorem 8| as well as [Kat01]. In the p-adic
case see the (proof of) [AE16, Theorem 3.10]. O

Thanks to Theorem 1.3.7.5 and the work of Deligne in [Dell2], the first three parts of the
conjecture follow from the curves’ case.

Theorem 1.3.7.6 (L. Lafforgue, Abe, Deligne, Abe-Esnault, Kedlaya). Parts (i), (ii) and (i)
of Conjecture 1.3.7.1 and Conjecture 1.3.7.2 are true for every smooth variety over F,.

Proof. For lisse sheaves, parts (i) and (iii) follow directly from Theorem 1.3.7.4, thanks to
Theorem 1.3.7.5. Switching to overconvergent F-isocrystals, Conjecture 1.3.7.2 is proven in
[AE16, Theorem 2.7] and independently in [Ked18, Theorem 3.1.9]. This implies Conjecture
1.3.7.1.(i) for overconvergent F-isocrystals. Part (iii) then follows from Theorem 1.3.7.4 thanks
to (i) and Theorem 1.3.7.5. Part (ii) is proven in [Dell2, Theorem 3.1] for lisse sheaves and in
[AE16, Lemma 4.1] and [Ked18, Theorem 3.4.2] for overconvergent F-isocrystals. O

The generalization of part (iv’) to higher dimensional varieties is yet incomplete. For the
moment we know how to construct from a coefficient object of both kinds, compatible lisse
sheaves. In dimension greater than one, we do not know how to construct, in general, compatible
overconvergent F-isocrystals.

Theorem 1.3.7.7 (L. Lafforgue, Abe, Drinfeld, Abe-Esnault, Kedlaya). Let Xy be a smooth
variety over F, and E a number field. Let & be an absolutely irreducible E-rational coefficient
object with finite order determinant on Xo. For every prime { different from p and every
embedding T : E — Q,, there exists a Q,-coefficient object which is E-rational with respect to T
and E-compatible with &,.

Proof. Drinfeld has proven the theorem when & is a lisse sheaf [Dril2]. The proof uses L.
Lafforgue’s result and a certain gluing theorem for lisse sheaves [ibid., Theorem 2.5]. The gluing
theorem is inspired by the seminal work of Wiesend in [Wie06]. When & is an overconvergent F-
isocrystal the result was proven in [AE16] and later in [Ked18]. They both use Drinfeld’s gluing
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theorem for lisse sheaves. In [AE16] they prove and use Theorem 1.3.7.5 for overconvergent
F-isocrystals. In [Kedl18] it is proven a weaker form, namely [ibid., Lemma 3.2.1], which is
enough to conclude. [

The known parts of Deligne’s conjecture have many important consequences. First, as every
coefficient object is -mixed, one may apply Proposition 1.3.6.8 to every coefficient object. We
list here other corollaries, which we will use later.

Corollary 1.3.7.8. Let & and Fy be two compatible coefficient objects. If & is absolutely
irreducible, the same is true for Fo. Moreover, if £ is absolutely irreducible, even F is absolutely
irreducible.

Proof. Suppose that the coefficient object & is absolutely irreducible. Then by Theorem 1.3.7.6,
&o is t-pure. Thus the coefficient object End(&y) is semi-simple and pure of weight 0. Since &
is absolutely irreducible, the vector space End(&y) = H°(Xy, End(&y)) is one dimensional. After
replacing F by its semi-simplification, we may assume that it is a semi-simple coefficient object.
Thus, the coefficient object End(Fy) is a semi-simple coefficient object which is compatible with
End(&y). By Corollary 1.3.6.7, the vector space End(Fy) is one dimensional as well. This implies
that Fy is absolutely irreducible, as we wanted. For the second part of the statement we proceed
in the same way, applying Corollary 1.3.6.7 to End(€) and End(F). O

Corollary 1.3.7.9. For every algebraic Q,-coefficient object &y, there exists a number field
E C Qy, such that & is E-rational.

Proof. Tt is enough to prove the result when & is absolutely irreducible. Thanks to Corol-
lary 1.3.5.2, the coefficient object & is isomorphic to Féa), where Fy is a coefficient object with
finite order determinant and a € @Z . As the determinant characters of & and F, are algebraic,

even the number a is algebraic. Theorem 1.3.7.6 implies that Fy is E-rational for some number
field £ C Qy, thus & is E(a)-rational. O

Finally, thanks to Theorem 1.3.7.6, we also have following analogue of [Moc04, Theorem 7.1]
for smooth varieties over finite fields.

Corollary 1.3.7.10. Over a smooth variety over F,, a Qy-coefficient object is geometrically
semi-simple if and only if it is a direct sum of v-pure Q,-coefficient objects. In particular, for
every morphism fy : Yo — Xo of smooth varieties, if & is a geometrically semi-simple coefficient
object over Xy, then fi& is a geometrically semi-simple coefficient object over Yj.

Proof. Thanks to Theorem 1.3.7.6, every coefficient object is «-mixed. Therefore, by Corol-
lary 1.3.6.4 we get the first part of the result. The property of a coefficient object to be a direct
sum of t-pure coefficient objects is manifestly preserved by the inverse image functor f;. This
concludes the proof. Il
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1.3.8 Compatible systems

Thanks to Theorem 1.3.7.7, from a coefficient object which satisfies suitable properties, we
can construct many compatible coefficient objects with different fields of scalars. Looking at
Conjecture 1.1.1.1.(iv), one notices that Deligne also predicted that these fields should be the
completions at different finite places of a given number field. It is possible to upgrade The-
orem 1.3.7.7 to a stronger form thanks to the work of Chin in [Chi03]. To state the result,
we use Serre’s notion of compatible systems, which we extend to arbitrary coefficient objects.
As we cannot construct, at the moment, p-adic companions in general, we do not ask that the
compatible system contains a p-adic coefficient object for every p-adic place. On the other hand,
we do ask that it includes lisse sheaves for every finite place which do not divide p.

Definition 1.3.8.1 (Compatible systems). If E is a number field, an E-compatible system over
Xo, denoted &, is the datum of a set ¥ of finite places of E containing |E|, and a family
{Ex0}rexn, where each &, is an E-rational F)-coefficient object and every pair of coefficient
objects is E-compatible. For every A, the coefficient object £y ¢ will be the A-component of the
compatible system.

If £ C E'is a finite extension of number fields and & is an E-compatible system, the
compatible system obtained from & by extending the scalars to E' will be the E’-compatible
system {&}, o }xesr, where X' is the set of places of E' over the places in ¥ and for every \ € ¥
over A € 3, the \' component is &), ; 1= £, 0®@g, E},. We say that a compatible system is trivial,
geometrically trivial, pure, irreducible, absolutely irreducible or semi-simple if each A-component
has the respective property.

Theorem 1.3.8.2 (after Chin). Let X, be a smooth variety over F, and & an algebraic Q,-
coefficient object of Xo. There exists a number field E, a finite place v € |E| and an E-compatible
system &, such that & is a v-component of &. When Xq is a curve, we can further find such
an E-compatible system & with ¥ = |E|.

Proof. By extending the field of scalars of & and taking semi-simplification, we reduce to the
case when & is absolutely irreducible. By Corollary 1.3.7.9, the coefficient object &, is FE-
rational. Thus, thanks to Corollary 1.3.5.2, after possibly enlarging E there exists a € E*
such that & is isomorphic to ]-'éa), where Fj is an E-rational coefficient object with finite order
determinant. When ¢ # p, thanks to Theorem 1.3.7.7 and [Chi03, Main Theorem, page 3], after
possibly enlarging E again, the lisse sheaf Fy sits in an E-compatible system. By twisting all
the components by a, the same holds true for &. When ¢ = p, thanks to Theorem 1.3.7.7, & is
E-compatible with some lisse sheaf V. The result then follows from the previous case.

When X is a curve, we obtain the stronger result thanks to the existence of p-adic compan-
ions provided by Theorem 1.3.7.4. After possibly replacing £ with a finite extension, we may

add to the compatible system previously constructed A\-components, for every place A which
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divides p. Here we do not need a new finiteness result for overconvergent F-isocrystals, namely

a p-adic analogue of Chin’s theorem, because the set of places we are adding is finite.
]

Remark 1.3.8.3. Even if a coefficient object &, is E-rational for some number field F, it could
be still necessary to enlarge E to obtain the E-compatible system &. For example, let Qg be
the quaternion group and let X, be a connected smooth variety that admits a Galois cover with
Galois group Q)s. Let H be the natural four-dimensional Q-linear representation of (g on the
algebra of Hamilton’s quaternions.

The representation H ®q Qy is irreducible over Qy if and only if ¢ = 2. If we take ¢ # 2, then
H ®q Q¢ decomposes as a direct sum of two copies of an absolutely irreducible two dimensional
Q-representation V, with traces in Q. The representation V; corresponds to an absolutely irre-
ducible Q-rational Q-coefficient object which does not admit any Q-compatible Qs-coefficient
object. Indeed, suppose that there exists a semi-simple Q-coefficient object V5, that is Q-
compatible with V. Then V;** would be Q-compatible with H ®¢ Q.. By Proposition 1.3.6.8,
the coefficient object V;** would be isomorphic to H ®g Q2. However, this is impossible, as
H ®qg Q3 is irreducible.

1.4 Independence of monodromy groups

1.4.1 The group of connected components

In [Ser00] and [LP95, Proposition 2.2] Serre and Larsen-Pink have proven some results of ¢-
independence for the groups of connected components of the monodromy groups of lisse sheaves.
In this section, we shall generalize their results to general coefficient objects. We will adapt
Larsen—Pink’s proof. The main issue for p-adic coefficient objects is to relate the monodromy
groups with the étale fundamental group of X,. We have already treated this problem in §1.3.3.
By Proposition 1.3.3.3, for every coefficient object & we have functorial surjective morphisms
Ve, : ™ Xo, 2) = m0(G (&, ) and g : (X, ) — mo(G(E, x)) of profinite groups.

Theorem 1.4.1.1. Let (Xo,z) be a smooth geometrically connected pointed variety over F,.
Let & and Fy be two compatible E\-coefficient objects over Xy.

(i) There exists an isomorphism o : mo(G (o, 2)) = mo(G(Fo,x)) as abstract finite groups,
such that Vx, = o 0 Pg,.

(ii) The isomorphism g restricts to an isomorphism ¢ : mo(G(€,z)) = mo(G(F, z)).
Following [LP95, Proposition 2.2], we need two lemma to prove Theorem 1.4.1.1.

Construction 1.4.1.2. Let & be a E\-coefficient object of rank r. We fix a basis of w, g, (&)
and we take the representation pg, : G(&,x) — GL, g, associated to &. For every Q-linear
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representation 0 : GL,.o — GL(V) we denote by & () the coefficient object associated to
(0 ®@qg Ey) o pe,. Even if £ () depends on the choice of a basis, its isomorphism class is uniquely
determined.

Lemma 1.4.1.3. Let & and Fy be compatible semi-simple objects. For every representation
0 of GL,q, we have that dim(H*(X,£())) = dim(H°(X,F(0))) and dim(H°(X,y,&(0))) =
dim(H( Xy, Fo(0)))

Proof. Each pair (£(0), Fo(#)) is again compatible and semi-simple. Moreover, by Theorem
1.3.7.6, for every representation 6, the coefficient object & () is -mixed. Therefore, for every
6, we may apply Corollary 1.3.6.7 to (Ey(6), Fo(6)). O

Remark 1.4.1.4. Using the terminology of [LP90], Lemma 1.4.1.3 proves that G(&,x) and
G(F,x) (resp. G(&,x) and G(Fy,x)) have the same dimension data.

Lemma 1.4.1.5 ([LP95, Lemma 2.3]). Let K be a field and G a reductive algebraic subgroup of
GL,.xk. If for every finite-dimensional representation V of GL,x the dimension of V& is equal
to the dimension of V€, then the group G is connected.

1.4.1.6Proof of Theorem 1.4.1.1. We explain the proof for the arithmetic monodromy groups.
For the geometric monodromy groups the proof is the same mutatis mutandis.

We notice that taking semi-simplification we do not change the group of connected compo-
nents of the arithmetic monodromy group. Thus we reduce to the case when Fy and G, are
semi-simple. We firstly prove a weaker statement.

(i) G(&o, ) is connected if and only if G(Fy, x) is connected.

For every finite étale connected cover f, : Yy — X, we denote by ay, and by, the functions from
the set of isomorphism classes of representations of GL, g to the natural numbers, defined by

ay, () := dim(H° (Yo, (f5€0)(0))) and by, (0) == dim(H" (Yo, (f3F0)(0))).-

By Lemma 1.4.1.3, for every finite étale connected cover Y, — Xy, we have ay, = by,. Suppose
that G(&y, ) connected. By Proposition 1.3.3.4, for every étale connected cover fy : (Yp,y) —
(Xo,x), the groups G(f;&o,y) and G(&,x) are isomorphic via the natural morphisms, thus
the functions ay,(#) and ax,(f) are equal. Thanks to Proposition 1.3.3.3, we also know that
there exists an étale Galois cover fy : (Yo, y) — (Xo, ) such that G(f;Fo,y) is isomorphic to
G(Fo,2)°. The functions by, (€) and bx,(f) are equal because of the comparison with ay, ()
and ax,(#). Therefore, by Lemma 1.4.1.5, the group G(Fo, z) is connected. This concludes the
proof of (1’).

To prove (i) we show that Ker(vg,) and Ker(¢)x,) are the same subgroups of 7$'(Xy, ).
By symmetry it is enough to show that Ker(vg,) C Ker(¢z ). This is equivalent to proving
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that if fo : (Yo,y) — (Xo,z) is the Galois cover associated to Ker(t)g,), then the natural map
Ker(vg,) — 7$(Xo, 1)/ Ker(i)z,) is the trivial map. In other words, it is enough to show that
G(f;Fo,y) is connected. As G(f;&,y) is connected by construction, this is a consequence of
(i).

O

1.4.2 Frobenius tori

We extend here the theory of Frobenius tori developed by Serre and Chin in [Ser00] and [Chi04,
§5.1] to algebraic coefficient objects over varieties of arbitrary dimension. The result for overcon-
vergent F-isocrystal is completely new. In §3, it is used to get information on the monodromy
groups of convergent F-isocrystals.

Construction 1.4.2.1 (Frobenius tori). For every FEj-coefficient object & and every closed
point ig : kg < Xy we have a functor (&) — (i5&) of inverse image. For every F-point x over
xg, this functor induces a closed immersion G(i§&y, ) — G(&y, ). Let F,, be the E/(\m)—point
of G(i&, x) corresponding to the Frobenius automorphism and let F3> be its semi-simple part.
The Zariski closure of the group generated by Fj> is the maximal subgroup of multiplicative
type of G(i&, ). This will be called the Frobenius group attached to o and it will be denoted
by M (&, x). Its connected component will be the Frobenius torus attached to zy, denoted by
T(E, x). If & is E-rational, the torus T(&,z) descends to a torus T(&y, z) over E, such that
T(Ey, ) ~ T(E,x) @p B

To prove our main theorem on Frobenius tori we first need another outcome of Deligne’s
conjecture. This is a finiteness result for the set of all the possible valuations of the eigenvalues
of the Frobenii at closed points.

Notation 1.4.2.2. Let us fix a prime /. For every prime ¢ (even ¢' = ¢ or ¢’ = p), we denote
by I»(Q,) the set of field isomorphisms Q, — Q, and by I.(Q,) the set of field isomorphisms
Q, = C. For every ¢ # p we endow Q, with the ¢-adic valuation v : (@;, x) — (R, +),
normalized such that v(¢') = 1. On Q, we consider the p-adic valuation v, normalized so that
v(q) = 1. Finally, we endow C with the morphism v : (C*, x) — (R, +) defined by a + log,(|al).

Definition 1.4.2.3. Let & be a Q,-coefficient object. For every closed point zy € | Xy, let
A, (&) be the set of Frobenius eigenvalues at zq. For x = ¢/, 0o we define

Vi(&) == {U(L(a))/deg(xo) | zo € |Xo|, a € Ay (&), L € ]*(@f)} .

We denote by V.,(&) the union of all the subsets V(&) C R with ¢ # p and V(&) € R and
by V(&) the subset V(&) U V(&) C R.
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We also define for x = ¢/, 0o, the set
V2 (&) = {v(e(a)) | [a] € O(&), ¢ € 1.(Q)}
and V2 (&) and V(&) as before (cf. §1.3.5.3).
Proposition 1.4.2.4. Let & be a Q,-coefficient object.
(1) Vip(&o) = V(o).
(i) If & is algebraic, the set V(&) is finite.

Proof. By the definition of ©(&), it is enough to prove part (i) when & is irreducible with finite
order determinant. In this case, by Theorem 1.3.7.6, the coefficient object &, is pure of weight
0 and p-plain. Therefore, we have Vi,(&) = V5 (&) = {0}. When & is algebraic, by [Ked18,
Lemma-Definition 4.3.2], the set V,,(&) is finite. Moreover, as the types of & are algebraic, the
set VO(&) is finite as well. Thanks to part (i), this implies that V(&) is finite. O

1.4.2.5. Let (Xo,Z) be a smooth connected pointed variety over F, and & an algebraic Q-
coefficient object of rank r. Let GL, be the algebraic group GL,g,. For every z € Xo(F),
we choose an isomorphism between w; g, and w, g, (which exists by [Del90]) and a basis of
w;,(€). This determines in turn an embedding G(&y, ) — GL, for every z. Let G}, C GL,
be the standard maximal torus. We denote by x1, ..., X, the standard basis of X*(G! ). The
Frobenius torus T(&,z) C G(&,z) — GL, is conjugated, by a Q,-points of GL,, to some
subtorus 7T, C GJ,. The torus 7, is uniquely determined up to the action of the permutation
group S, on GJ,,.

Definition. Let C(&) be the set of GL,-conjugacy classes of Frobenius tori T'(§y, ) where x
varies among the F-points of Xy. Let D(&y) be the set of R-linear subspaces of X*(G],)g which
admit a set of generators in V(&))" C X,.(G],)r. We have a natural action of S, on D(&).

Proposition 1.4.2.6. Let & be an algebraic coefficient object. There exists an injective map
of sets 0 : C (&) — D(&)/S,.

Proof. Let x be an F-point of Xy and ay1,...,a,, the eigenvalues of the Frobenius at x.
We define Y, C R" = X,(G!,)r as the R-linear subspace generated by the elements y’ :=
(41,5 y5h1), where ¢ is an clement in I(Q,) and y.; = v(i(ay,;)). By definition, Y, €
D(&y) and its class [Y,] in D(&)/S, does not depend on the order of the Frobenius eigenvalues
g,y 0. Weset 6([T,]) := [Yz]. We want to show that ¢ is injective.

The natural pairing (-,-) : X*(G},) x X.(G},) — Z induces a map f, : X*(G],)o —
Hom(Y,,R). The group X*(T,)q is the quotient X*(G/,)o/ K., where K, is the Q-linear sub-
space of elements y ® a/b in X*(G},)g with x|z, of finite order under tensor. We want to prove

45



that the Kernel of f, is K,. In particular, that Y, uniquely determines K, hence the subtorus
T, C G’,. We first prove that f,(K,) =0. Let x = x{" ®--- ® x2% € X*(G",) be a character
which is finite on T}. Since (g1, ..., aq,) € To(Qy), we have that 3, := agy - ... al is a root
of unity. Therefore, for every ¢ € I(Q,),

f00(Ws) = aylq + -+ + aryl, = v(1(B2)) = 0.

This implies that f,(x) = 0.

On the other hand, let x = x{" ®...® x®¥ € X*(G",) be a character which is sent to 0 by
fz- We want to show that the restriction of x to T} is finite. Since the subgroup generated by the
point (a1, ..., &,) € Tp(Qy) is Zariski dense in T, it is enough to show that 8, := a2} ... a%,
is a root of unity. By the assumption &, algebraic, we know that 3, is an algebraic number.
Moreover, for every ¢ € I1(Q,), we have that v(«(8,)) = a1y’y + - + a9, = fo(X)(y5) = 0.
Thus, by Kronecker’s theorem, (3, is a root of unity. [

Corollary 1.4.2.7. Let & be an algebraic Q,-coefficient object. The set C(&) is finite.

Proof. By Proposition 1.4.2.4.(ii), the set V(&) is finite. Therefore, by definition, D(&) is finite
as well. Thanks to Proposition 1.4.2.6, this proves that C'(&) is finite. O

From here we could prove directly Theorem 1.4.2.10 for étale lisse sheaves exploiting
Cebotarev’s density theorem as in the proof of [Ser00, Théoréme at page 12]. We need in-
stead two other results to deal with non-étale lisse sheaves and p-adic coefficient objects.

Proposition 1.4.2.8 (after Larsen—Pink). Let & and Fy be two compatible coefficient objects
on Xo. The reductive ranks of G(&y,x) and G(Fy,x) are equal.

Proof. We may assume that & and Fy are semi-simple. Then the result follows from [LP90,
Proposition 1] applied to G(&y, ) and G(Fy, z), thanks to Lemma 1.4.1.3. O

Lemma 1.4.2.9. Let & be an E-compatible system. For all but finitely many X € |E|xp,, the
A-component of & is an étale lisse sheaves.

Proof. Let & be a component of & and xy a closed point of X,. As & is algebraic, for all
but finitely many primes ¢ # p, the Frobenius eigenvalues at zy are f-adic units. Therefore, by
Proposition 1.3.1.17, for every A € |E| which divides such an ¢, the A-component of & is an
étale lisse sheaf. O

Theorem 1.4.2.10. Let X, be a smooth connected variety over Fy and & an algebraic coefficient
object. There exists a Zariski-dense subset A C X(FF) such that for every F-point x € A and
every object Fo € (&), the torus T(Fo,x) is a mazimal torus of G(Fy,x). Moreover, if Gy is a
coefficient object compatible with &y, the subset A satisfies the same property for the objects in
(Go)-
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Proof. Let x be a geometric point and 7y : zg < X the embedding of the underlying closed
point. For every object Fy € (&), we have a commutative square of functors

(Fo) —— (&)

ok
(i5Fo) — (i5&o)-

It induces a square on monodromy groups

G(fo, l’) A e G(go, ZL‘)

iO*] iO*]

M(le’) «— M(SQ,ZL‘)

If T (&, x) is a maximal torus in G(&y, x), then the same is true for T'(Fy, z) in G(Fy, x) (see
for example [Hum?75, Corollary C, page 136]). This shows that it is enough to prove the result
when Fy = &;. Moreover, we may assume that &, is semi-simple, because semi-simplification
does not change the reductive rank of the monodromy group.

We notice that by Proposition 1.4.2.8, if Gy is a coefficient object compatible with &, the
torus T'(&, z) is maximal in G(&, x) if and only if T'(Gy, ) is maximal in G(Gy, z). Therefore, it
is enough to prove the result for some coefficient object compatible with &. By Theorem 1.3.8.2,
&y sits in a semi-simple compatible system &. By Lemma 1.4.2.9, there exists a component of
& which is an étale lisse sheaf. Let us denote it by Vy. After replacing X, by a connected finite
étale cover we may assume by Proposition 1.3.3.4 that G(V,, x) is connected for any choice of
x. We choose an F-point x of X. By Corollary 1.4.2.7, the set of conjugacy classes of Frobenius
tori T(Vo, z) in GL(w;g,(Vo)), where z varies among the F-points of X, is finite. Arguing as
in [Ser00, theorem at page 12], as a consequence of Cebotarev’s density theorem for the étale
fundamental group of Xy, there exists a Zariski-dense subset A C X (F) such that for every
F-point = € A, the torus T (Vy, x) is maximal inside G(Vy, x) (see also [Chi04, Theorem 5.7] for
more details). This concludes the proof. O

Remark 1.4.2.11. In the proof of Theorem 1.4.2.10, we need the results of §1.3.7 to prove the
following properties of the coefficient object &.

(i) & is t-mixed.
(ii) The set V(&) is finite.
(iii) & admits a compatible étale lisse sheaf.

For many coefficient objects “coming from geometry”, it is possible to prove these properties
directly, without using Theorem 1.3.7.4.
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1.4.3 The neutral component

We start with a first result on the independence of the neutral components of the monodromy
groups of coefficient objects. As in Theorem 1.4.1.1, the independence result we need is Corol-
lary 1.3.6.7.

Proposition 1.4.3.1. Let X, be a smooth geometrically connected variety over F,. Let & and
Fo be two compatible coefficient objects over Xj.

(i) If & and Fo are semi-simple, & is finite if and only if Fo is finite.
(i) If & and Fy are geometrically semi-simple, £ is finite if and only if F is finite.

Proof. Thanks to Proposition 1.3.3.4, we may assume that the arithmetic and the geometric
monodromy groups of & and JFy are connected. By Theorem 1.3.7.6, we know that & and
Fo are t-mixed. Thus, thanks to Corollary 1.3.6.7, the coefficient object &, is trivial (resp.
geometrically trivial) if and only if the same is true for Fy. O

1.4.3.2. The next result we want to prove is a generalization of [Chi04, Theorem 1.4]. Let
(Xo,2) be a smooth connected pointed variety over F,. Let £ be a number field and & a
semi-simple E-compatible system over X,. For every A € X, we denote by p, the associated
representation on wy g, (Ex0).

Theorem. After possibly replacing E by a finite extension, there exists a connected split reductive
group Go over E such that, for every A € X, the extension of scalars Go ®g E\ is isomorphic to
G(Ero,x)°. Moreover, there ezists a faithful E-linear representation py of Gy and isomorphisms
©r0: Go ®@p E\x = G(Ex0,2)° for every A € X such that py @g E is isomorphic to pxo © ¢r-

Following Chin, we use a reconstruction theorem of a reductive group from the Grothendieck
semiring of its category of finite-dimensional representations.

Notation 1.4.3.3. If C is a Tannakian category, we denote by KT (C) its Grothendieck semir-
ing. If & is a coefficient object and C = (&), we denote it by K*(&). Finally, when
C = Rep(G) with G an algebraic group, we will write K (G).

Theorem 1.4.3.4 ([Chi08, Theorem 1.4]). Let G and G’ be two connected split reductive groups,
defined over a field K of characteristic 0. Let T and T' be mazimal tori of G and G’ respectively.
For every pair of isomorphisms op : T" = T and f : KT (G) = K*(G") making the following
diagram commuting

K*H(G) —— K+(@)

o

—— KT (T"),



there exists an isomorphism ¢ : G' = G of algebraic groups such that the induced homomorphism
©* on the Grothendieck semirings is equal to f and the restriction of ¢ to T' is equal to 7.

Remark 1.4.3.5. The maximal tori that we will use to apply Theorem 1.4.3.4 will be the
Frobenius tori provided by Theorem 1.4.2.10. Suppose that & is a coefficient object and for
some F-point z, the group M (&, ) is connected and T/(&y, x) is a split torus over E. Then, the
group of characters of T(SQ, x) is canonically isomorphic to the subgroup of E* generated by the
eigenvalues of F,,. The isomorphism is given by the evaluation of a character at the point F:.
In particular, if & sits in an E-compatible system & and T (Ex0,x) is split over E for one A € X
(or equivalently every A € ¥), the semirings K *(Tv (Ex0,x)) are all canonically isomorphic when
X varies in ¥, Moreover, notice that for every A € X, the semiring K+ (T(Exp,)) is canonically
isomorphic to K*(T'(Exp,x)).

The known cases of the companions conjecture provide isomorphisms of the Grothendieck
semiring of compatible objects. A bit surprisingly, we have these isomorphisms even if we do not
dispose, at the moment, of a general way to construct compatible overconvergent F-isocrystals
in dimension greater than 1.

Proposition 1.4.3.6. Let & and Fy be two compatible coefficient objects such that all the
irreducible objects in (&) and (Fy) are absolutely irreducible. There exists a unique isomorphism
of semirings K+ (&) — K*(Fy) preserving the characteristic polynomial functions.

Proof. The uniqueness and the injectivity of the map are consequences of Theorem 1.3.6.8 that
we can apply thanks to Theorem 1.3.7.6. By Theorem 1.3.8.2, when Fj is a lisse sheaf, there
exists a morphism of semirings f : K (&) — K (F) preserving the characteristic polynomial
functions. We notice that to prove the final statement, it is enough to show that f is an
isomorphism in this case. Indeed if & and Fy are two compatible overconvergent F-isocrystals,
we can always find, by Theorem 1.3.8.2, a compatible lisse sheaf Gy. Then, the isomorphism
K*(&) = K*(F), is obtained via the composition

K*(&) = K (Go) = KT (Fo).

By Corollary 1.3.7.8 and the hypothesis, f sends irreducible objects to irreducible ob-
jects. Hence, if [Ho] € KT (&) and > m;[H] is the isotypic decomposition of [H,], then
Yo omif([H]) is the isotypic decomposition of f([H]). In particular, a summand of an ele-
ment in the image of f is again in the image of f. By construction, we know that for every
n,m € N, the classes [F5" @ (Fy)®™] are in the image of f. This shows that f is surjective. [

Remark 1.4.3.7. The assumption that the irreducible objects in (&) and (Fy) are absolutely
irreducible is verified, for example, when G(&, ) and G(Fo, z) are split reductive groups. In
particular, it is always possible to obtain this condition after a finite extension of the fields of
scalars of the coefficient objects.
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1.4.3.8Proof of Theorem 1.4.3.2. Thanks to Theorem 1.4.1.1, there exists a Galois cover of
Xp such that all the arithmetic monodromy groups of the compatible system are connected.
By Proposition 1.3.3.4, the neutral components of the monodromy groups remain unchanged
when we pass to the cover. By Remark 1.3.2.5, after extending E, we may change the F-point x
without changing the isomorphism class of the monodromy groups. Thanks to Theorem 1.4.2.10,
we may choose x, so that T'(€, o, x) is a maximal torus in G(€,, x) for every A € ¥. Moreover,
after enlarging the base field, we may assume that z, is an F,-point. We fix a place p € X.
As G(&€,,,x) is connected and reductive, up to replacing £ with a finite extension, there exists
a connected split reductive group Gy, defined over E, which contains a maximal torus 7Tj,
such that Gy ®@p E, ~ G(E,0,x) and Ty ~ Tv(f,’,\yo,x). We choose py : Gy — GL, g and
©u0: Go®p E, = G(E,0,x) such that v, 0(To @p E,) = T(E,0,7) and po @p E,, =~ p,0° @u0-
The isomorphism ¢, o induces an isomorphism

ono: K (Euo) = KH(Go @5 E,)

which sends [€,0] to [po ®g E,]. As Tj is split over E, for every A € ¥ the reductive group
G(Ex0,x) is split. By Proposition 1.4.3.6, for every A € X, there exists a unique isomor-
phism gy, : K*(Ey0) =~ K*(&,0) preserving the characteristic polynomial functions, hence
it sends [Exp] to [Eu0]. As Gy is split and connected, there exists a canonical isomorphism
h%)\ : K+(GO RQF EM) :> K+(G0 XRE E)\) We take

Fro = huxo @00 gau K" (&) = K (Gy®g E)).

By construction it commutes with the natural isomorphism K+ (T'(Exp,z)) ~ KT (To @ E)).
Thanks to Theorem 1.4.3.4, the isomorphism f) o induces an isomorphism ¢y : Go @g E) =
G(Exp, ) such that fro = @3- As fao([Exo]) = [po @& E)], the representations py ®p E) and
Pr0 © pao are isomorphic. ]

Corollary 1.4.3.9. Let & be a semi-simple Q,-coefficient object. The set of closed points where
the Frobenius is semi-simple is Zariski-dense in Xj.

Proof. Twisting the irreducible summands of &, we may assume that & has trivial types.
Hence by Theorem 1.3.7.6, the coefficient object &, is algebraic. Let Z be an F-point of X,
and pg, : G(€, ) — GL(w;g,(£0)) be the tautological representation. If & is an étale lisse
sheaf, by [LP92, Proposition 7.2], there exists a Zariski-dense set of closed points xy such that
the Frobenius at z¢ is I'-reqular with respect to pg, : G(Eo, ) — GL(w;5,(&)) (cf. ibid.). In
particular, at these points the Frobenius is (regular) semi-simple by [LP92, Proposition 4.6].
If & is not an étale lisse sheaf, by Theorem 1.3.8.2 and Lemma 1.4.2.9, there exists a semi-
simple compatible étale lisse sheaf V. By the previous discussion, there exists a Zariski-dense
set of closed points of Xy which are I'-regular with respect to the tautological representation
pve : GV, 7) = GL(w, 5,(W)). By Theorem 1.4.3.2, for all these closed points, the Frobenius
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is I'-regular even with respect to the tautological representation pg, : G(&, ) = GL(w, g, (&0))-
Thus we conclude again thanks to [LP92, Proposition 4.6]. O

Remark 1.4.3.10. As a consequence of Theorem 1.4.3.2, we obtain the same result of indepen-
dence for the geometric monodromy groups. Indeed, by Corollary 1.3.5.5 if & is a geometrically
semi-simple coefficient object, G(&, x)° is the derived subgroup of G (&, x)°.

Remark 1.4.3.11. If we weaken the statement of Theorem 1.4.3.2, asking that all the isomor-
phisms between Gy and the monodromy groups are defined over Q,, rather than Fj, one can
prove it differently. One can use [KLV14, Theorem 1.2], a stronger version of Theorem 1.4.3.4,
in combination with Proposition 1.4.3.6. This proof does not use Frobenius tori.

The author became aware of the theorem of Kazhdan—Larsen—Varshavsky reading [Dril8].
In his paper, Drinfeld uses this result as a starting point to prove the independence of the entire
monodromy groups over Q, (not only the neutral components).

1.4.4 Lefschetz theorem

In this section, we prove an independence result for Theorem 1.3.7.5. This could also be obtained
as a consequence of Theorem 1.4.3.2. Here we have preferred to give a proof which exploits the
full strength of the Tannakian lemma [AE16, Lemma 1.6]. A similar argument is used in [ibid.,
Corollary 3.7]. In our proof, when the coefficient objects are (-mixed, we do not need the results
in §1.3.7. We first prove a lemma which relates the arithmetic and the geometric situation.

Lemma 1.4.4.1. Let (Yy,y) — (Xo,x) be a morphism of geometrically connected pointed vari-
eties over F,. Let & be a coefficient object on Xj.

(i) If the natural morphism f. : G(f*E,y) — G(E,x) is an isomorphism, the same is true for
fO* : G(fékgO?y) — G(507$)

(i) If & is geometrically semi-simple and fo. : G(fi€o,y)° — G(E,x)° is an isomorphism,
even f, : G(f*€,y)° — G(E,x)° is an isomorphism.

Proof. We want to use the functorial diagram of Proposition 1.3.2.6.(iii) to show that the mor-
phism fo, in (i) is surjective. As Yy and X, are geometrically connected, fo. : 77 (Yo, y)t —
71 (Xo, )" is an isomorphism, thus fo. : G(f*&, y)*" — G(&y, x)*" is surjective. On the other
hand, at the level of geometric monodromy groups, f. : G(f*€,y) — G(&,x) is surjective by
assumption. The surjectivity of fo. : G(fi&,y) = G(&, x) is then a consequence of the other
two. For (ii) we notice that by Corollary 1.3.5.5, the algebraic groups G(f*€,y)° and G(&, x)°
are the derived subgroups of G(f;&o,y)° and G(&y, x)° respectively. Thus we get the result. [

Theorem 1.4.4.2. Let fy: (Yo,y) — (Xo,2) be a morphism of geometrically connected smooth
pointed varieties. Let & and Fy be compatible geometrically semi-simple coefficient objects over
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Xo. Let oo : G(fi&o,y) = G(&y,x) and o : G(fiFo,y) — G(Fo,x) be the morphisms induced

by fi and let ¢ and 1 be their restriction to the geometric monodromy groups.
(i) If p is an isomorphism, the same is true for 1.
(i) If @o is an isomorphism, the same is true for .

Proof. By Lemma 1.4.4.1, part (i) implies part (ii). Notice that ¢ and ) are always injective,
thus to prove part (i) it is enough to prove that if ¢ is surjective, even 1) is so. Suppose that
@ is surjective, we want to apply [AE16, Lemma 1.6] to prove that v is surjective. Indeed, the
morphism 1) satisfies the hypothesis (x) of the lemma by Theorem 1.3.5.1. Thus we are reduced
to show that f*: (F) — (f*F) is fully faithful.

A functor of Tannakian categories commuting with fibre functors is always faithful. Hence
it is enough to prove that f* preserves the dimensions of the Hom-sets, or equivalently that for
every G € (F) we have

h2(G) = h°(f*G), (1.4.4.1)

where we denote by h° the dimension of the space of global sections of geometric coefficient
objects.

We proceed by steps. First we prove that for every pair of coefficient objects G', G" € (F),
they satisfy the equality (1.4.4.1) if and only if the same is true for G’ @ G”. By the additivity
of hP, it is clear that if the geometric coefficient objects satisfy the equality individually, then
the same is true for their direct sum. Conversely, if h°(G' & G”) = h°(f*(G' & G")), then

hO(g/) o hO(f*g/) + h()(g//) o hO(f*g//) —0.

Since f* is faithful, then h°(G’) — h°(f*G") < 0 and h°(G") — R°(f*G") < 0. Thus K°(G') =
RO(f*G’) and h°(G") = h°(f*G"), as we wanted. In particular, as (F) is a semi-simple category,
we have proven that it is enough to show (1.4.4.1) for the objects of the form F®™ @ (F¥)®"
with m,n € N.

We fix m,n € N. By the hypothesis, the ®@-functor f* : (£) — (f*E) is fully faithful,
therefore the equality (1.4.4.1) holds for £¥™ ® (£Y)®". By Corollary 1.3.6.7.(i), as we know
by Theorem 1.3.7.6 that every coefficient object is (-mixed, we have that h?(E®™ @ (EV)®") =
RO(FOm@(FY)®™) and hO(f*(E¥m@(EV)®™)) = WO(f*(FEm@(FY)®™)). Hence, we get h°(F"®
(FV)@m) = hO(f*(F®™ @ (F¥)®")). This concludes the proof. O

1.5 Coefficient objects on abelian varieties

1.5.1 A finiteness result

Let X, be an abelian variety over I, with identity z¢ and let « be a geometric point over x.
We prove a finiteness statement for coefficient objects defined on Xj.

52



Theorem 1.5.1.1. Let X be an abelian variety. FEvery absolutely irreducible E\-coefficient
object with finite order determinant is finite. In particular, every t-pure E\-coefficient object on
Xo becomes constant after passing to a finite étale cover.

1.5.1.2 Proof without companions. After extending F) we can assume that \ is an admissible
place for X;. We want to prove that the fundamental group 77(X,x) is commutative via an
Eckmann—Hilton argument [EH62, Theorem 5.4.2]. As X is projective, by Proposition 1.3.4.4,
the two projections of Xy x X to its factors induce an isomorphism

aMX xp X,z x ) = 70X, x) x T (X, z).
If m: X xg X — X is the multiplication map of X, the morphism
my (X, z) x (X, 1) 5 a0 (X xp X, 2 x 2) 25 70X, 2)

endows 77 (X, z) with the structure of a group object in the category of affine group schemes.
By Eckmann-Hilton, this implies that 7} (X, z) is commutative.

Let & be an absolutely irreducible coefficient object with finite order determinant. We
notice first that the geometric monodromy group G(&, ), being a quotient of 77(X, ) is also
commutative. On the other hand, as & is semi-simple, G(&, ) is reductive. Thus we have proven
that G(&,x) is a group of multiplicative type. By Theorem 1.3.5.4, we deduce that G(&,x) is
finite. As the coefficient object & is absolutely irreducible with finite order determinant, by
Proposition 1.3.5.7 G(&, x) has finite index in G(&y, z). Thus & is a finite coefficient object.

To prove the second part, by Proposition 1.3.3.3, it is enough to show that a (-pure coefficient
object & is geometrically finite. By Corollary 1.3.6.4, we already know that & is geometrically
semi-simple. Thus, after extending the field of scalars and taking the semi-simplification, we
can assume that & is absolutely irreducible. By Corollary 1.3.5.2, there exists a twist Jy of &
with finite order determinant. By the first part of the statement, we know that Fj is finite, thus
&y is geometrically finite, as we wanted. [

The previous proof does not use Theorem 1.3.7.4. It relies mainly on Theorem 1.3.5.4 and
Proposition 1.3.4.4. As a consequence, we obtain a proof of Deligne’s conjectures for abelian
varieties that does not use the Langlands correspondence.

Corollary 1.5.1.3. If Xy is an abelian variety, then Conjecture 1.5.7.1 holds.

Proof. Let & be an absolutely irreducible Q,-coefficient object whose determinant has finite
order. By the previous proposition & is finite, thus the eigenvalues of the Frobenii at closed
points are roots of unity. In particular, & is pure of weight 0 and p-plain. Moreover, &
corresponds to an absolutely irreducible Q,-linear representation p of a finite quotient G of
(X, x). As G is a finite group, there exists a number field £ C Q, and an absolutely
irreducible E-linear representation p of G such that p @z Q, ~ p.
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We deduce first that & is F-rational. In addition, if ¢’ is a prime, for every embedding
7 : E — Qp the representation p ®g Q, corresponds to an absolutely irreducible Q,-coefficient
object, E-rational with respect to 7 and E-compatible with &. This concludes the proof. [

1.5.1.4  Proof of Theorem 1.5.1.1 with companions. By Corollary 1.3.5.2 there exists a twist
Fo of & with finite order determinant. In light of Theorem 1.3.7.6, there exists a number
field F such that Fy is E-rational and ¢-pure. By Theorem 1.3.7.7 there exists an F-rational
lisse Q,-sheaf Gy, E-compatible with Fy. By Corollary 1.3.7.8, the lisse sheaf G, is absolutely
irreducible. As 7¢(X, ) is commutative, thanks to Theorem 1.3.5.4 for lisse sheaves, we know
that G is finite. By Proposition 1.3.5.7, also Gy is finite. By virtue of Proposition 1.4.3.2, the
coefficient object Fy, being compatible with Gy and absolutely irreducible, is finite as well. This
proves the first part of the statement. For the second part we can proceed as in the proof in
§1.5.1.2. ]

Remark 1.5.1.5. Even if the second proof uses a deep result as Theorem 1.3.7.7, it has the
advantage that can be adapted to a wider class of varieties. Indeed, to apply the reasoning, it is
enough that 7$*(X, x) contains an open subgroup that is a solvable profinite group, namely an
open subgroup which contains a finite normal series of closed subgroups with abelian successive
quotients.

1.5.2 Newton polygons

Tsuzuki has proven that the Newton polygons of F-isocrystals on an abelian variety are constant
[Tsul7, Theorem 3.7]. We use Theorem 1.5.1.1 to recover his result. We recall first the notion
of Newton polygon at closed points of a coefficient object.

Definition 1.5.2.1. Let X, be a smooth variety, ¢ a prime number and ¢, an isomorphism
between Q, and @p. Let v, the p-adic valuation of @p, normalized such that v,(¢) = 1. We
denote by the same symbol the valuation induced by ¢, on QQ,. Let & be a QQ-coefficient object
on Xy and zj a closed point of X,. We consider the characteristic polynomial Py (&o,t) =
ag + ajt + -+ - + a,t" of & at z, where ap = 1 and (aq,...,q,) € @2_1 X @; Let Ay ., (o) be
the polygonal chain in R? with vertexes

s up(ar)/ deg(af) ) ) .
(Civvgla)/ deg(ag) ) )

We define the v,-Newton polygon of & at z{, as the boundary of the upper convex hull of
Ay, (Eo). We say that & is ¢,-isoclinic of 1,-slope v if for every closed point zj, the ¢,-Newton
polygon of & at y, consists of one segment of slope v. We say that & is ¢,-unit-root if it is
tp-isoclinic of ¢,-slope 0.
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Corollary 1.5.2.2. Let Xy be an abelian variety. The v,-Newton polygon at closed points of
a coefficient object & defined on Xy is independent of the point. Moreover, if & is absolutely
irreducible, then it is v,-isoclinic.

Proof. After extending the field of scalars and taking the semi-simplification, & can be expressed
as a direct sum of absolutely irreducible coefficient objects. This operation does not change the
t,-Newton polygons at closed points. As a consequence, it is enough to show that if & is
absolutely irreducible, then it is ¢y-isoclinic.

We know by Corollary 1.3.5.2 that such a coefficient object is the twist of a coefficient
object with finite order determinant. Hence, in light of Theorem 1.5.1.1, it is a twist of a
finite coefficient object. A finite coefficient object is ¢,-unit-root, because the eigenvalues of the
characteristic polynomials at closed points are all roots of unity. At the same time, the twist
of a ¢,-unit-root coefficient object by a € @Z is ¢,-isoclinic of ¢y-slope v,(a). This yields the
desired result. O

Remark 1.5.2.3. One could even show that Tsuzuki’s result (Corollary 1.5.2.2) implies Theo-
rem 1.5.1.1. First, taking twists, one reduces the theorem to the case of ¢,-unit-root coefficient
objects. By [Ked11, Theorem 2.3.7], the coefficient object is then determined by a representation
of the étale fundamental group. As the geometric étale fundamental group of an abelian variety
is commutative, the finiteness of the geometric monodromy group becomes a consequence of
class field theory.
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2 Some remarks on the companions conjecture for nor-
mal varieties

2.1 Introduction

2.1.1 The companions conjecture

Let IF, be a finite field of characteristic p and X, a normal variety over F,. Let ¢ be a prime
different from p and V, an absolutely irreducible Weil lisse Q,-sheaf on X, with finite order
determinant. For every closed point of X, we have a well-defined characteristic polynomial
associated to the action of the Frobenius at that point. Let £ C Q, be the field generated
by the coefficients of all these polynomials. Deligne has proven in [Dell2], that E is a finite
extension of Q. He shows this finiteness exploiting the known case when X is a curve, proven by
L. Lafforgue in [Laf02] as a consequence of the Langlands correspondence. This property of the
field E was conjectured by Deligne in [Del80, Conjecture 1.2.10] together with other properties
for Vy. One of them is the following one.

Conjecture 2.1.1.1 (Companion conjecture). After possibly replacing E with a finite extension,
for every finite place X not dividing p, there exists a Weil lisse Ey-sheaf compatible with Vy (same
characteristic polynomials of the Frobenii at closed points).

When X has dimension 1, the conjecture is again a consequence of the Langlands correspon-
dence. In higher dimension, Drinfeld in [Dril2] proved Conjecture 2.1.1.1 when X is smooth.
He uses some ideas of Wiesend developed in [Wie06] to deduce the result from the case of curves.
Unluckily his method can not be applied directly to prove the full conjecture [Drinfeld, op. cit.,

§6].

2.1.2 The obstruction

Suppose for simplicity that the singular locus of X, consists of one closed point and that we
can solve the singularity. In other words, suppose that there exists a smooth variety Y, and a
proper morphism fy : Yo — X, which sends Zy C Y} to a closed point zy € |Xy| and which is
an isomorphism outside Zy. Assume also that Z := Zy ®p, F is connected. We have an exact

sequence
T fox

N Z, 2) 2 78 (Yy, 2) &5 78 (X, z) — 1
in the sense that the smallest normal closed subgroup containing the image of i, is the kernel
of fox (see Lemma 2.3.1.2).
This means that every Weil lisse sheaf V, on Yp, such that Vy|z ~ @?r for some r, is the
inverse image of a Weil lisse sheaf defined over Xy. As we know the companions conjecture on
Yp, in order to deduce it for Xy, we have to verify the following.
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Property 2.1.2.1. For every pair (Vy, Wy) of compatible absolutely irreducible Weil lisse
sheaves with finite order determinant on Yj, the sheaf V) is trivial on Z = Z; ® F if and
only if the same is true for Wj.

In general, if this property holds we say that the morphism Zy — Xy is balanced (Definition
2.3.24).

Conjecture 2.1.2.2 (Conjecture 2.3.2.5). Let Xy and Zy be varieties over F,. If X, is normal,
every morphism go : Zy — X is balanced.

We show that the property of a morphism to be balanced is “invariant under deformations”
(Proposition 2.3.2.8). We also prove the conjecture in some cases.

Theorem 2.1.2.3 (Theorem 2.4.2.3). Let go : Zy — Xo be a morphism between two varieties
over F,. Suppose Xy normal, then gy is balanced in the following cases.

(i) When Zy is a normal variety.
(ii) When Zy is a semi-stable curve with simply connected dual graph.

(iii) If the smallest closed normal subgroup of wi'(Xy,z) containing the image of (7, 2) is
open inside T X, x).

(iv) If 7¢(X, z) contains an open solvable profinite subgroup.

2.2 Notation

We fix a prime number p and we denote by ¢ a certain power of p. Let F, be a field with ¢
elements and F an algebraic closure [F of F,. A variety over a field k£ will be a separated scheme
of finite type over k. We denote by Xy, Yy, Zy, ... varieties over F, and by X,Y, Z, ... the base
change of them to F. In general we always denote with a subscript o objects and morphisms
defined over F, and the suppression of it will mean the extension to F.

If X, is connected and z is a geometric point of Xy then we denote by 7¢*(X,,z) and
78 (X, x) the étale fundamental groups of Xy and X, by W (F/F,) the Weil group of F, and by
W (Xo, ) the Weil group of Xj. If y is a closed point of X, then we write F,, C W (X, z) for
the conjugacy class of geometric Frobenii of yy and we call F,, the Frobenii at yp.

The letter ¢ will denote a prime number different from p. For every ¢ we fix an algebraic
closure of Q;, denoted by Q,. We have a category LS(X,Q,) of lisse sheaves defined over X.
Adding an action of W (F/F,) we obtain the category of Weil lisse Q,-sheaves defined over X,
denoted by Weil(Xy, Q,). We often call them simply lisse sheaves. We denote Weil lisse sheaves
with a calligraphic letter, as for example V), and their restriction to X removing .
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For every natural number n, a lisse sheaf is said pure of weight n if for every closed point z( of
X, and every isomorphism Q, = C, the eigenvalues of any Frobenius automorphism induced by
F,, have complex absolute value (##(z))™?2. In the rest of the exposition the representations of
the Weil group and the étale fundamental group will always be continuous and finite dimensional
even if not said explicitly.

If E is a number field, an E-compatible system over Xy, denoted Vy, is a family {Vo}ap
where:

(i) For every X 1 p, Vo is an E-rational lisse E)-sheaf with respect the natural inclusion
E — F,.

(ii) The lisse sheaves Vy » are pairwise E-compatible.

For every A, the lisse sheaf V \ will be the A-component of the compatible system.

2.3 Balanced morphisms

2.3.1 Finite étale covers of a contraction

Definition 2.3.1.1. Let fy : Yy — X, be a morphism between two varieties and Z, a closed
subvariety of Y. We say that fj is a contraction of Z; it fy is a surjective morphism, which is
an isomorphism outside Z, and such that the image of Zj is a subvariety W, of Xg of dimension
0.

Let Yy be a geometrically connected normal variety over F, and ig : Zy — Y; a closed
immersion, where Zj is proper and geometrically integral over F,. Suppose in addition that
there exists a normal variety X, over IF, and f; : Yy — X, a contraction of Z,.

Lemma 2.3.1.2 (Corollaire 6.11, SGA I, Exposé XI). For every geometric point = of X, over
xo and every geometric point z of Zy over x. We have an exact sequence

M Z,2) 2 7Yy, 2) ELN (X, ) — 1
in the sense that the smallest normal closed subgroup containing the image of i, is the Kernel

of fox-

Remark 2.3.1.3. Under the hypothesis of the lemma, the datum of a lisse sheaf on X is equiv-
alent to the datum of a lisse sheaf on Yj, geometrically trivial on Zy. Hence if the companions
conjecture holds for Yj, the conjecture on Xj is equivalent to the following conjecture.

Conjecture 2.3.1.4. Let V, be an E-rational, lisse E\-sheaf on Yy. If Vo is geometrically
trivial on Zy, for every other finite place N { p, every semi-simple compatible lisse E -sheaf is
geometrically trivial on Zj.
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2.3.2 The conjecture
We study Conjecture 2.3.1.4 in a slightly more general setting.

Definition 2.3.2.1. Let Z; be a connected variety. A compatible system Vy, on Z is balanced
if one of the following conditions is verified.

(i) For every A, the lisse sheaf V) is geometrically trivial.
(i) It does not exist any A such that the lisse sheaf Vy , is geometrically trivial.

A compatible system Vy on Zj is strongly balanced if the dimension of H°(Z,V,) does not
depend on \. If Z; is not connected we say that a compatible system is balanced (resp. strongly
balanced) if it is balanced (resp. strongly balanced) for every connected component.

Remark 2.3.2.2. To prove that a compatible system is balanced, we can always make some
dévissage. Indeed, the property to be balanced remains invariant when we take a finite ex-
tension of the base field. Secondly, thanks to Corollary 1.3.6.4, every pure lisse sheaf on X
is geometrically semi-simple, hence we can always assume that the compatible system is semi-
simple. Using [Del80, Proposition 1.3.4], we can also reduce to the case when V) has finite order
determinant. In particular, we can work with 1, étale.

Proposition 2.3.2.3. Let Z, be a normal variety over F,. Every pure compatible system on
Zy is strongly balanced.

Proof. We can suppose Z, geometrically connected. As Z; is normal, if U, is a dense open
of Zy, the étale fundamental group of U maps surjectively onto the étale fundamental group
of Z. Thus a lisse sheaf over Zj is geometrically trivial if and only if the restriction to Uy is
geometrically trivial. This means we can also assume Z; to be smooth. In this case we may
apply Corollary 1.3.6.7. 0

Definition 2.3.2.4. Let go : Zp — X be a morphism between two varieties over F,. We say
that go is a balanced morphism if for every pure compatible system V; of X, the pullback g5V
is balanced.

We reformulate Conjecture 2.3.1.4 in a more general setting.

Conjecture 2.3.2.5. Let X, and Zy be varieties over F,. If Xy is normal, every morphism
go : Zo — Xo is balanced.

Notation 2.3.2.6. For simplicity, let us a assume from now on Z; geometrically connected.
We have a morphism 7$(Z, z) <5 (X, x). For every étale compatible system V on X, we

denote by {po}rp the associated family of f-adic representations of 75 (Xp, ). Let Im(g.) be
the smallest normal closed subgroup of 7¢*(Xy, z) containing the image of g,.
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Remark 2.3.2.7. A morphism g, is balanced if and only if for every étale pure compatible
system on X, the inclusion Im(g,) € Ker(po) for one X implies the same inclusion for every
other place A. In particular, the property of a morphism to be balanced depends only on
the inclusion Im(g,) C 7¢(Xy, z) as topological groups together with the assignment of the
conjugacy classes of the Frobenii at closed points of 7$'( X, z) and their degrees.

As a consequence of the remark, we prove an “homotopy invariance” of balanced morphisms.
Let Yy and Sy be two varieties over F, and hg : Yy — Sy a proper and flat morphism with
connected and reduced geometric fibers. Let so and sj, be closed points of Sy and write Z, and
Z{, for the fibers of hy above these points.

Proposition 2.3.2.8. Let fy : Yo — Xo be any morphism. The restriction go = folz, s
balanced if and only if gj) := f0|Zé s balanced.

Proof. Let z and 2’ be two geometric points of Zy and Z) respectively and = and «’ their images
via fo. By the homotopy exact sequence, the pairs of topological groups (w¢'(Xo, ), Im(g.))
and (7$'(Xo,2’),Im(g.)) are isomorphic, with isomorphism given by an isomorphism between
¢ Xo, ) and 7$'(Xy,2’) induced by a path from x to 2’. This isomorphism respects the
conjugacy classes of Frobenii at closed points and their degrees. We conclude by Remark

2.3.2.7. ]

2.4 Some examples

We can verify now Conjecture 2.3.2.5 in some cases. Notice that thanks to Proposition 2.3.2.3
we already know the conjecture when Z; is normal.

2.4.1 Semi-stable curves

Let Zy be a connected semi-stable curve over F,. Denote by {Z (i)}lgign the set of the irreducible
components of Z. Assume that for every i, the component Z is smooth. Let z be a geometric
point of Z and for every 1 < i < n, let 2() be a generic geometric point of Z®. We denote by
I' the dual graph of Z and by P the point of I' associated to the connected component where z
lies.

Proposition 2.4.1.1 ([Sti06]). The choice of étale paths {7V} 1<i<,, joining z to 2z for every
1 determines an isomorphism

7T1ét(Z7 Z) = 7Tlét(Z(l)v Z(l)) ¥k ﬂ-lét(Z(n)? Z(n)) * 71-l(Fa P)/\>
where w1 (T, P)" is the profinite completion of the topological fundamental group of T.

Corollary 2.4.1.2. If I is a tree, every pure compatible system on Zy is balanced.
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Proof. Proposition 2.4.1.1 shows that when ' is a tree, the geometric étale fundamental group
of Z, is generated by the étale fundamental groups of the components Z®, which are smooth
by assumption. Hence, by Proposition 2.3.2.3, we get the result. 0

2.4.2 Finite monodromy

The invariance of the L-function of compatible lisse sheaves can be used, as in Proposition
2.3.2.3, to prove that some morphisms are balanced. This kind of method works only under
strong finiteness conditions.

Proposition 2.4.2.1. If Z; is geometrically connected, a morphism gy : Zg — Xo s balanced
in the following cases.

(i) If the smallest closed normal subgroup of w{'(Xo,z) containing the image of wi(Z,z) is
open inside (X, x).

(ii) If m{(X,x) contains an open solvable profinite subgroup.

Proof. Let V, be a pure compatible system on X,. For every A { p let G be the geometric
monodromy group of V ».

(i) If g5(Vo.) is geometrically trivial on Zj, then by assumption G is finite. By [LP95,
Proposition 2.2] the same is true for every A and the groups Ker(py) N 7 (X, z) are all
equal when \ varies. This implies that for every A, the group 7$'(Z, 2) is contained in
Ker(py). Therefore, for every A, the lisse sheaf ¢§(Vp\) is geometrically trivial.

(ii) By Corollary 1.3.6.4, the groups G are all semi-simple as V; is pure. Thanks to the
assumption that 7¢*(X, z) is solvable, we also know that all the groups G are solvable.
Hence they are finite and we can proceed as in the previous case.

]

Corollary 2.4.2.2. A dominant morphism go : Zy — Xq is balanced. In particular, if Xo is a
smooth curve, every morphism qo : Zo — Xo is balanced.

Proof. As go is dominant, we can find a smooth connected variety Z) C Z; such that gy z
is again dominant. In particular, the morphism go|z; is generically finite, hence the image of
the geometric étale fundamental group of Z; has finite index in 7¢(X, z). Thus we can apply
Theorem 2.4.2.1 to conclude. [

To summarize our results we state them as a unique theorem.
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Theorem 2.4.2.3 (Proposition 2.3.2.3, Corollary 2.4.1.2 and Proposition 2.4.2.1). Let go :
Zy — Xo be a morphism between two varieties over Fy. Suppose Xy normal, then g is balanced

in the following cases.
(i) When Zy is a normal variety.
(ii) When Zy is a semi-stable curve with simply connected dual graph.

(iii) If the smallest closed normal subgroup of (X, x) containing the image of wi{(Z,2) is

open inside 7 X, x).

(iv) If (X, z) contains an open solvable profinite subgroup.
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3 Maximal tori of monodromy groups of F'-isocrystals
and applications (joint with Emiliano Ambrosi)

3.1 Introduction

3.1.1 Convergent and overconvergent isocrystals

Let IF, be a finite field of characteristic p and let X, be a smooth geometrically connected variety
over [F,. The first Weil cohomology introduced to study Xj is the ¢-adic étale cohomology, where
¢ is a prime different from p. Its associated category of local systems is the category of Weil lisse
Q-sheaves, denoted by Weil(X,, Q,). While p-adic étale cohomology is not a Weil cohomology
theory, moving from ¢ to p one encounters two main p-adic cohomology theories: crystalline
cohomology and rigid cohomology. These two give rise to different categories of “local systems”.
We have the category F-Isoc(Xj) of @p—linear convergent F-isocrystals over X, and the category
F-Isoc'(X,) of @p—linear overconvergent F-isocrystals over Xj.
By [Ked04b], these two categories are related by a natural fully faithful functor

¢ : F-Isoc'(X,) — F-Isoc(X,).

When X is proper, the functor € is an equivalence of categories. In general, the two categories
have different behaviours. While F-Isoc' (X)) shares many properties with Weil(X,, Q,) as we
have seen in §1, the category F-Isoc(Xj) has some exceptional p-adic features.

For example, thanks to [Ked18, Prop. 1.2.7 and Prop. 1.2.8], for every & € F-Isoc(X)),
after possibly shrinking X, there exists a filtration

0=E1C&C..C&=E&

where for each ¢ the quotient 85“ /&L has a unique slope s; at closed points and the sequence
S1,..., 8y is increasing. When & = €(&])) for some & € F-Isoc!(Xj), the subobjects & in
general are not in the essential image of € as well (see for example [Ked16, Remark 5.12]). Our
main result highlights a new relationship between the subquotients of SOT in F-Isoc'(X,) and
the ones of & in F-Isoc(Xj).

Theorem 3.1.1.1 (Theorem 3.3.1.2). Let & be an irreducible Q,-linear overconvergent F-
isocrystal. If & admits a subobject of minimal slope Fo C & with a non-zero morphism
Fo = Ox, of convergent isocrystals, then 53 has rank 1.

Remark 3.1.1.2. Theorem 3.1.1.1 proves a particular case of the conjecture in [Ked16, Remark
5.14]. Even if the conjecture turned out to be false in general, Theorem 3.1.1.1 corresponds to
the case when F; C &; has minimal slope and &, is the convergent isocrystal Oy,, endowed
with some Frobenius structure (notation as in [ibid.]).
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3.1.2 Torsion points of abelian varieties

Before explaining the main ingredients of the proof of Theorem 3.1.1.1, let us describe an appli-
cation to torsion points of abelian varieties. This was our main motivation to prove Theorem
3.1.1.1. Let F be an algebraic closure of F, and IF C k be a finitely generated field extension.
Recall the classical Lang—Néron theorem (see [LN59] or [Con06] for a more modern presenta-
tion).

Theorem 3.1.2.1 (Lang-Néron). If A be an abelian variety over k such that Tryp(A) = 0,
then the group A(k) is finitely generated.

By Theorem 3.1.2.1, denoting by A™ the Frobenius twist of A by the p"-power Frobenius,
we have a tower of finite groups A(K)iors € AN (k)iors € AP (k)iors € ... In June 2011,
in a correspondence with Langer and Rossler, Esnault asked whether this chain is eventually
stationary. An equivalent way to formulate the question is to ask whether the group of kPe-
rational torsion points A(kperf)tors is a finite group, where kP! is a perfect closure of k. As an
application of Theorem 3.1.1.1, we give a positive answer to her question.

Theorem 3.1.2.2 (Theorem 3.4.1.1). If A be an abelian variety over k such that Trym(A) = 0,
then the group A(KP)ors is finite.

Remark 3.1.2.3. Theorem 3.1.2.2 was already known for elliptic curves, by the work of Levin in
[Lev68], and for ordinary abelian varieties, by [R6s17, Theorem 1.4]. When / is a prime different
from p, the group A[(*] is étale, hence A[¢(>°](kP*') = A[¢>°](k). Therefore, in Theorem 3.1.2.2,
the finiteness of torsion points of prime-to-p order is guaranteed by Theorem 3.1.2.1.

To relate Theorem 3.1.2.2 to Theorem 3.1.1.1 we use the crystalline Dieudonné theory, as
developed in [BBMS82]. The proof of Theorem 3.1.2.2 is by contradiction. If |A[p>°](kP*!)| = oo,
then there exists a monomorphism Q,/Z, — A[p™=|® from the trivial p-divisible group Q,/Z,
over k and the étale part of the p-divisible group of A. Spreading out to a “nice” model 21/ X of
A/k and applying the contravariant crystalline Dieudonné functor I, one gets an epimorphism of
F-isocrystals D(A[p>]®") — D((Q,/Z,)x) =~ Ox over X. By a descent argument and Theorem
3.1.1.1, the quotient extends to a quotient D(A[p>]) - Ox over X. Going back to p-divisible
groups, this gives an injective map Q,/Z, — A[p™] over k. Therefore, A[p>|(k) would be an
infinite group, contradicting Theorem 3.1.2.1.

3.1.3 Monodromy groups

The categories F-Isoc(X,) and F-Isoc'(X,) and their versions without Frobenius structures
Isoc(X,) and Isoc’(X) are neutral Tannakian categories. The choice of an F-point x of X
induces fibre functors for all these categories. To prove Theorem 3.1.1.1, we study the mon-
odromy groups associated to the objects involved. For every Eg € F-Isoc'(Xj), we have already
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seen that we can associate an object & := €(&}) € F-Isoc(X,). We denote by £ € Isoc(X,)
(resp. € € Isoc(Xy)) the isocrystals obtained from & (resp. &) by forgetting their Frobenius
structure. Using the Tannakian formalism, we associate to each of these objects an algebraic
group G(—). They all sit naturally in a commutative diagram of closed immersions

G(&) —— G(&)

| I

G(EN) —— G(&)).

If 53 is irreducible and its determinant has finite order, by Proposition 1.3.5.7, the group
G(ED)/G(ET) is finite. We prove that the same is true for G(&)/G(E).

Proposition 3.1.3.1 (Proposition 3.3.1.1). Let 5(]; be an irreducible overconvergent F-isocrystal
with finite order determinant. The quotient G(&y)/G(E) is finite.

To prove Proposition 3.1.3.1, we have to show that G(&) is “big”. We study G(€) as a
subgroup of G(£T) and we prove our fundamental result.

Theorem 3.1.3.2 (Theorem 3.2.3.9). If Eg is an overconvergent F-isocrystal, then G(E) con-
tains a mazimal torus of G(ET).

To prove Theorem 3.1.3.2, we use the existence of Frobenius tori which are maximal tori
of G(E}) (Theorem 3.2.3.4). First we reduce to the case when & is semi-simple and algebraic
(cf. Definition 3.2.3.3). By Theorem 3.2.3.4, there exists a closed point i : £y < Xy such that
the subgroup G(iZ&l) € G(&!) contains a maximal torus of G(&)). Since over a closed point
every F-isocrystal admits an overconvergent extension, one has G(it€)) = G(i5€). Hence,
G(&) contains a maximal torus of G(£]). To pass from G(&) C G(&) to G(E) C G(ED),
we will apply Theorem 3.2.3.4 to an auxiliary overconvergent F'-isocrystal gg over Xj, such
that G(ET) = G(EY), G(E) = G(€) and with the additional property that the natural map
G(&)/G(E) — G(E))/G(ET) is an isomorphism.

Remark 3.1.3.3. In [Cre92a, page 460] Crew asks whether, under the assumptions of Theorem
3.1.3.2, the group G(€) is a parabolic subgroup of G(ET). In two subsequent articles [Cre92b]
and [Cre94], he gives a positive answer to his question in some particular cases. Since parabolic
subgroups of reductive groups always contain a maximal torus, Theorem 3.1.3.2 is an evidence
for Crew’s expectation.

To deduce Theorem 3.1.1.1 from Proposition 3.1.3.1, we first reduce ourself to the situation
where the determinant of 53 has finite order. To simplify, let us assume that Fy = £} and G (&)
is connected. Proposition 3.1.3.1 implies that G(€) = G(&) hence that the morphism & — Ox,
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commutes with the trivial Frobenius structure on Ox,. In particular, £ has slope 0, so that the
minimal slope of & is 0. Since the determinant of &, has finite order, this implies that £ = &,
hence that & admits a quotient & — Oy, in F-Isoc(Xy). As e : F-Isoc!(X;) — F-Isoc(X))
is fully faithful, & admits a quotient & —» O}O in F-Isoc'(X;). On the other hand, & is

irreducible, so that the quotient gives actually an isomorphism Eg ~ C);{O.

3.1.4 Weak (weak) semi-simplicity

As an additional outcome of Theorem 3.1.3.2, we get a semi-simplicity result for extensions
of constant convergent F-isocrystals. For us, a constant F-isocrystal will be an object & €
F-Isoc(X) such that its image in Isoc(Xy) is isomorphic to OF" for some n € Z.

Let F-IsocC,.i(Xo) denote the Tannakian subcategory of F-Isoc(X,) generated by the
essential image via ¢ : F-Isoc'(X() — F-Isoc(Xj) of pure objects in F-Isoc'(X;). This category
is large enough to contain all the F-isocrystals “coming from geometry”. More precisely, for every
smooth and proper morphism f, : Yo — Xy and every ¢ € N, the subquotients of the higher
direct image R’ focryssOy, are in F-Isoc,,..t(Xo) by [KM74] and [Shi08] (see [Amb18, Fact
3.1.1.2 and Fact 3.2.1.1]). Thanks to a group-theoretic argument (Lemma 3.2.3.8), Theorem
3.1.3.2 implies the following.

Corollary 3.1.4.1 (Corollary 3.2.3.12). A convergent F-isocrystal in F-Isoc,.i(Xo) which is
an extension of constant F-isocrystals is constant.

Remark 3.1.4.2. One can construct on A]qu non-constant extensions of constant convergent
F-isocrystals. Corollary 3.1.4.1 shows that these extensions are outside F-Isoc,et (A}Fq). One
can further construct these extensions in such a way that the resulting convergent F-isocrystal
has log-decay, in the sense of [KM16]. Therefore, as a consequence of Corollary 3.1.4.1, we get
new examples of convergent F-isocrystals with log-decay which do not “come from geometry”.

Remark 3.1.4.3. Let & be a convergent F-isocrystal with constant Newton polygons. Corol-
lary 3.1.4.1 implies that G(€) has no unipotent quotients. Let £ be the convergent isocrystal
which underlies the subobject of & of minimal slope. Since G(E') is a quotient of G(£), it
does not have unipotent quotients as well. In [Chal3, Conjecture 7.4 and Remark 7.4.1], Chai
conjectures that if 83 is the higher direct image of a family of ordinary abelian varieties, then
G(EY) is reductive. Corollary 3.1.4.1 may be thought as a first step towards his conjecture.

3.1.5 Organization of §3

In Section 3.2 we introduce the monodromy groups of the various categories of isocrystals and we
prove Theorem 3.1.3.2. In Section 3.3 we prove Theorem 3.1.1.1 and some of its consequences.
Finally, in Section 3.4 we prove Theorem 3.1.2.2.
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3.1.6 Notation

3.1.6.1. Let K be a characteristic zero field and C a K-linear Tannakian category. A Tannakian
subcategory of C is a strictly full subcategory of C closed under direct sums, tensor products,
duals and subobjects. For € € C, we denote by (£) the smallest Tannakian subcategory of C
containing £. Let w : C — K a fibre functor. For every £ € C, the restriction of w to (£)
defines a fibre functor of (£). We denote by G(€) the Tannakian group of (£) with respect to
this fibre functor. In general, the fibre functor will be clear from the context, so that we do not
keep w in the notation. The group G(&) will be called the monodromy group of £.

3.1.6.2. When G is an algebraic group, we denote by rk(G) the dimension of a maximal torus
of G and we will call it the reductive rank of G. We say that a subgroup H of G is of maximal
rank if rk(H) = rk(G). Let K be a characteristic 0 field, G and H two affine groups over K and
f G — H a morphism of affine group schemes. We will say that f is injective if it is a closed
immersion and that f is surjective if it is faithfully flat. Since over a characteristic 0 field every
affine group scheme is reduced, this does not generate any confusion.

3.2 Monodromy of convergent isocrystals

3.2.1 Review of isocrystals

We recall in this section some basic facts about isocrystals. See [Ked16, §2] for more details.
Throughout §3.2.1, let k& be a subfield of F. We denote by W (k) the ring of Witt vectors of k
and by K its field of fractions. We write @p for a fixed algebraic closure of Q,, and we choose
an embedding of W (F) in Q,. Let X be a smooth variety over k.

Definition 3.2.1.1. We denote by Isoc(X) the category of @p-lz’near convergent isocrystals.
Let Ox be the convergent isocrystal associated to the structural sheaf. We also denote by
F-Isoc(X) the category of @p—linear convergent F-isocrystals. This category consists of pairs
(€, ®), where € is a convergent isocrystal and ® is a Frobenius structure on £, namely an isomor-
phism F*€ = €. Let Crys(X/W (k)) be the category of crystals of finite Ox .ys-modules and let
Crys(X/W(/{))@p be the extension of scalars of Crys(X/W (k)) to Q,. Let F—Crys(X/W(/c))@p
be the category of objects in Crys(X/ W(k))@p endowed with a Frobenius structure.

Theorem 3.2.1.2 (Ogus, Berthelot). There ezists a canonical equivalence of categories
F-Crys(X/W(k))g, = F-Isoc(X).

Proof. The result follows from [Ked16, Theorem 2.2] after extending the field of scalars from K
to @p. ]
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Remark 3.2.1.3. In light of Theorem 3.2.1.2, we will feel free to refer to convergent F-
isocrystals simply as F-isocrystals.

Definition 3.2.1.4. Let IsocT(X) be the category of @p—lmear overconvergent isocrystals and
F-Isoc'(X) the category of Q,-linear overconvergent F'-isocrystals. The overconvergent isocrys-
tal associated to the structural sheaf will be denoted by O.

By definition, there is a natural functor € : F-Isoc'(X) — F-Isoc(X).
Theorem 3.2.1.5 (Kedlaya). The functor ¢ : F-Isoc’(X) — F-Isoc(X) is fully faithful.

Remark 3.2.1.6. Even if this functor is fully faithful, the essential image is not closed under
subquotients. Thus, the essential image is not a Tannakian subcategory in the sense of §3.1.6.1,
so that the induced morphism on Tannakian groups is not surjective. Nevertheless, the mor-
phism is an epimorphism in the category of affine group schemes (see [BB92]). See Remark
3.2.3.11 for further comments.

Definition 3.2.1.7. Suppose that X is connected and let £ be an F-isocrystal of rank r. We
denote by {a](€)}1<i<, the set of generic slopes of £. We use the convention that af(£) < --- <
al(&), thus the choice of the ordering does not agree with [DK17]. We say that & is isoclinic
if a](€) = a(E). A subobject F of £ is of minimal slope if it is isoclinic of slope a](£). See
[Ked16, §3 and §4] for more details on the theory of slopes.

3.2.2 The fundamental exact sequence

We shall briefly review the theory of monodromy groups of F-isocrystals. These monodromy
groups have been firstly studied by Crew in [Cre92al. In Proposition 3.2.2.4, we introduce a
fundamental diagram of monodromy groups that we will extensively use in the next sections.

Notation 3.2.2.1. Let X, be a smooth geometrically connected variety over F,. We choose
once and for all an F-point y of Xy. This defines fibre functors for all the Tannakian categories
of isocrystals previously defined. We write ]l(T) for the overconvergent F-isocrystal (9}0 endowed
with its canonical Frobenius structure. For every 53 € F-Isoc' (X)) we consider three associated
objects. We denote by £ € Isoc'(X,) the overconvergent isocrystal obtained from Sg by
forgetting the Frobenius structure. The image of 53 in F-Isoc(Xj) will be denoted by removing
the superscript T. At the same time, £ will be the convergent isocrystal in Isoc(Xj), obtained
from & € F-Isoc(Xj) by forgetting its Frobenius structure. Here a summary table.

Isocrystal | F-Isocrystal

Convergent & &

Overconvergent &t &l
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For each of these objects we have a monodromy group G(—) (see §3.1.6.1) with respect to the
fibre functor associated to our F point y.

Definition 3.2.2.2. We say that a convergent isocrystal is trivial if it is isomorphic to 19" for
some r € N. An F-isocrystal & is said constant if the convergent isocrystal £ is trivial. We
denote by F-Isoc.s (X)) the strictly full subcategory of F-Isoc(Xj) of constant objects. For
& € F-Isoc(Xy), we denote by (E)est € (Eo) the Tannakian subcategory of constant objects
and by G(&)*" the Tannakian group of (£y)es. Finally, for a € Q, and & € F-Isoc(Xj), we
denote by Séa) the F-isocrystal obtained from & multiplying its Frobenius structure by a. We
will call Séa) the twist of & by a. We give analogues definitions for overconvergent isocrystals.

Remark 3.2.2.3. The category F-Isoc.s (X)) is a Tannakian subcategory of F-Isoc(X) in the
sense of §3.1.6.1. Let px, : Xo — Spec(F,) be the structural morphism of X,. Every constant
F-isocrystal is the inverse image via px, of an F-isocrystal defined over Spec(F,). The category
F-Isoc(Spec(F,)) is equivalent to the category of @p—vector spaces endowed with a linear auto-
morphism. The automorphism is induced by the Frobenius structure. Since the functor p¥%, is
fully faithful, the same is true for F-Isoc.q(Xo). As a consequence, the monodromy group of
any constant object is commutative. Finally, the natural functor ¢ : F-Isoc'(X,) — F-Isoc(X))

induces an equivalence of categories between F-Isoc!,,(X,) and F-Isoc..(Xo).

Proposition 3.2.2.4. The natural morphisms induce a commutative diagram

0 —— GE) —— G(&) —— G(&E)™ —— 0

/ I !

0 —— GEN) — GEH — GEH* —— 0

with exact rows. The left and the central vertical arrows are injective and the right one is
surjective.

Proof. The inverse image functor with respect to the ¢g-power Frobenius of Xy, is equivalence of
categories both for the convergent and overconvergent isocrystals over X (see [Ogu84, Corollary
4.10] and [Laz17]). The exactness of the rows then follows from Proposition A.2.3. In addition,
the right vertical arrow is surjective because, by the discussion in Remark 3.2.2.3, the functor
(Eg Yest — (€0)est 18 fully faithful and the essential image is closed under subquotients. O

Remark 3.2.2.5. We do not know whether the natural quotient ¢ : G(&)%" — G(E£})*" is an
isomorphism in general. Via the Tannakian formalism, to prove the injectivity of ¢, one has to
show that the embedding (é’g Yest = (Eo)est 1 essentially surjective. While every Fy € (Ep)est
comes from an object Fi in F-Isoc'(X;), we do not know whether such an F lies in (£}). This
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will be the main issue in the proof of Theorem 3.2.3.9. We bypass the problem by embedding Sg
in an auxiliary overconvergent F-isocrystal £ with G(&)" ~ G(E})**!. One can use Theorem
3.2.3.9 to show that if Eg is algebraic (cf. §3.2.3.3) and semi-simple, then ¢ is an isogeny.

3.2.3 Maximal tori

In this section, we briefly recall the main theorem on Frobenius tori of overconvergent F-
isocrystals in §1.4.2 and we use it to prove Theorem 3.2.3.9. For this task, the main issue is to
pass from the arithmetic situation (Corollary 3.2.3.6) to the geometric one (Theorem 3.2.3.9).
We keep the notation as in §3.2.2.1

Definition 3.2.3.1. Let iy : g < Xy be the closed immersion of a closed point of Xy. For
every overconvergent F-isocrystal & we have an inclusion G(if&l) — G(&)), with G(ig&])
commutative. The image of the maximal torus of G(i&]) in G(&}) is the Frobenius torus of &)
at x, denoted by T, (E]).

3.2.3.2. Thanks to Deligne’s conjecture for lisse sheaves and overconvergent F-isocrystals (cf.
§1.3.7), for a certain class of overconvergent F-isocrystals it is possible to construct (-adic
companions (cf. [ibid.]) where ¢ is a prime different from p. From this construction one can
translate some results known for lisse sheaves to overconvergent F-isocrystals. Theorem 3.2.3.4
is an example of such a technique (see also §3.4.3.2). For the existence of companions one needs
some mild assumptions on the eigenvalues of the Frobenii at closed points.

Definition 3.2.3.3. An overconvergent F-isocrystal Eg is algebraic if the eigenvalues of the
Frobenii at closed points are algebraic numbers.

Theorem 3.2.3.4 (Theorem 1.4.2.10). Let Eg be an algebraic overconvergent F-isocrystal.
There exists a Zariski-dense set of closed points xg of Xo such that the torus Txo(é'g) s a
mazimal torus of G(E}).

Remark 3.2.3.5. It is worth mentioning that when & is pure Theorem 3.2.3.4 is also a con-
sequence of the new crystalline Cebotarev density theorem proven by Hartl and Pal [HP18,
Theorem 12.2].

Corollary 3.2.3.6. Let 55 be an algebraic overconvergent F-isocrystal. The closed subgroup
G(&) C G(E)) is a subgroup of maximal rank.

Proof. Thanks to Theorem 3.2.3.4, we can find a closed embedding of a closed point 7y : g — X
such that T}, (&) is a maximal torus of G(£]). We have a commutative diagram
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G(i5&) — G(&)

| l

G(is€)) — G(&),

where the morphism G(i5&) — G(i3E]) is an isomorphism by Remark 3.2.2.3. Since G(i4€]) is
a subgroup of G(&}) of maximal rank, the same is true for the subgroup G(&) C G(&]). O]

Corollary 3.2.3.7. If Sg be an algebraic semi-simple overconvergent F-isocrystal, then G(&Ey)e
and G(E})*t are groups of multiplicative type.

Proof. As discussed in Remark 3.2.2.3, the groups G(£1)*" and G(&)*! are commutative. It
suffices to verify that they are also reductive. The former is a quotient of G(Sg), which is
reductive because 55 is semi-simple. The latter is a quotient of G(&), which by Corollary
3.2.3.6 is a subgroup of G(&}) of maximal rank. Since G(&)*" is commutative, R, (G(&)*") is
a quotient of G(&). Thus R,(G(&)*") is trivial by the group-theoretic Lemma 3.2.3.8 below.
This concludes the proof. O

Lemma 3.2.3.8. Let K be an algebraically closed field of characteristic 0, let G be a reductive
group over K and let H be a subgroup of G of maximal rank. FEvery morphism from H to a
unipotent group is trivial. Equivalently, the group Exty, (K, K) vanishes.

Proof. Every unipotent group is an iterated extension of copies of G,. Therefore, it is enough to
show that every morphism from H to G, is trivial. Suppose there exists a non-trivial morphism
¢ : H— G,. As char(K) = 0, the image of ¢ is G, itself. We write K for the kernel of ¢. Every
map from a torus to G, is trivial, thus the subgroup K C G has maximal rank as well. This
implies by [Mill5, Lemma 18.52] that Ng(K°)° = K°. By construction, K is normal in H, thus
H is contained in Ng(K), which in turn is contained in Ng(K°). This implies that K° = H°,
thus that H/K is a finite group scheme, against the fact that H/K ~ G,. [

Theorem 3.2.3.9. Let Eg be an overconvergent F-isocrystal. The subgroup G(E) C G(ET) has
mazimal rank.

Proof. If we replace 5{; with its semi-simplification with respect to a Jordan—Hoélder filtration,
we do not change the reductive rank of G(£1) and G(E). Thus we may and do assume that &)
is semi-simple. This implies that £ is semi-simple as well. We also notice it is harmless to twist
the irreducible summands of Sg. Thus, we may assume that all the irreducible subobjects of 53
have finite order determinant, hence that £ is algebraic and pure of weight 0 (Theorem 1.3.7.6).
Choose a set of generators x1., . - ., Xno0 of X*(G(&)*"). Let V| (resp. V) be the representation
of G(E]) (resp. G(&)) associated to E! (resp. &). As every constant F-isocrystal comes from
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an overconvergent F-isocrystal, for every ¢, the character x;o extends to a character XzT,o of
rFIsoc’ () the Tannakian group of F-Isoc(X,). Take

=1 o Pxlo
i=1

and write Vj for the induced representation of 7F1°¢(X;), the Tannakian group of F-Isoc(Xy).
By construction, the groups of constant characters X *(G(%)C“) and X (G(Vp)*') are canon-
ically isomorphic. Moreover, since Vi~ v Q "and V ~ V& @ , we get isomorphisms
G(V1) ~ G(EN and G(V) ~ G(E). Thus it is enough to show that rk(G(V1)) = tk(G(V)).

By Proposition 3.2.2.4, there exists a commutative diagram with exact rows

0 —— G(V) —— G(Vy) —— G(Vp)™t —— 0

I I !

0 —— GV — GV) — GVt —— 0

where the first two vertical arrows are injective and the last one is surjective. As 170T is still
algebraic and pure of weight 0, by Corollary 3.2.3.6, tk(G(Vy)) = rk(G’(f?0 )). Since the reductive
rank is additive in exact sequences, it is enough to show that G(VO)C“ and G(V;)*! have the
same reductive rank. We will show that the morphism ¢ : G(V4)e" — G(V;)*! of the > previous
dlagram is actually an isomorphism. We already know that ¢ is surjective. As G (V )est and
G (VO )est are groups of multiplicative type by Corollary 3.2.3.7, it remains to show that the map
o X*(G(V] )<t = XH(G (Vo)e) is surjective. This is a consequence of the construction of V.

Indeed, X*(G(V,)™t) = X*(G(V,)*") is generated by 10, .- ., Xno and for every 4, the character
Xz,o e X*(G(Vy)et) is sent by ©* to xso- O

Corollary 3.2.3.10. Let 5(;[ be an algebraic overconvergent F-isocrystal. The reductive rank of
G(ENt is the same as the one of G(E)*".

Proof. The result follows from Corollary 3.2.3.6 and Theorem 3.2.3.9, thanks to Proposition
3.2.2.4 and the additivity of the reductive ranks with respect to exact sequences. 0

Remark 3.2.3.11. Using Theorem 3.2.1.5, one can show that when &' is semi-simple, the
functor (7)) — (€) is fully faithful. Therefore, in this case, G(€) C G(ET) is an epimorphic
subgroup (cf. Remark 3.2.1.6). Nevertheless, Theorem 3.2.3.9 does not follow directly from
this, because epimorphic subgroups can have, in general, lower reductive rank. For example, let
K be any field and let G be the algebraic group SLsk. The subgroup H of G defined by the
matrices of the form
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a 0
0 a =
0 0 a?
with a € K*, is the radical of a maximal parabolic subgroup of G. Therefore, by [BB92, §2.(a)
and §2.(d)], H is an epimorphic subgroup of G. On the other hand, the reductive rank of H
is 1. More surprisingly, in characteristic 0, every almost simple group contains an epimorphic

subgroup of dimension 3 [ibid., §5.(b)].

Another consequence of Theorem 3.2.3.9 is given by the following result that we will not
use, but which has its own interest. We have already discussed it in §3.1.4.

Corollary 3.2.3.12. Let Sg be a overconvergent F-isocrystal and assume that ET is semi-simple.
Every Fy € (&) which is an extension of constant F-isocrystals is constant.

Proof. The statement is equivalent to the fact that the group Ext};(g) (@p,@p) vanishes. The
result then follows from Theorem 3.2.3.9 thanks to Lemma 3.2.3.8. Il

3.3 A special case of a conjecture of Kedlaya

3.3.1 Proof of the main theorem

As a consequence of the results of §3.2.3, we obtain a special case of the conjecture in [Ked16,
Remark 5.14]. We shall start with a finiteness result. We retain the notation as in §3.2.2.1.

Proposition 3.3.1.1. If 5(]; is an irreducible overconvergent F'-isocrystal with finite order de-
terminant, then G(E)" is finite. In particular, every constant subquotient of the F-isocrystal
&y is finite.

Proof. We first notice that Sg is algebraic thanks to Deligne’s conjecture (Theorem 1.3.7.6). By
Corollary 3.2.3.7, we deduce that the algebraic groups G(&)°" and G(£])*" are of multiplicative
type and by Corollary 3.2.3.10 that they have the same dimensions. The algebraic group G(Eg)“t
is finite thanks to Proposition 1.3.5.7. Therefore, the same is true for G(&)“. O

Theorem 3.3.1.2. Let 5(]; be an irreducible overconvergent F'-isocrystal. If £y admits a subobject
of minimal slope Foy C & with a non-zero morphism F — 1, then F =& and € ~ 1.

Proof. Observe that both the hypothesis and the conclusion are invariant under twist. Thus,
by [Abel5, Lemma 6.1], we may assume that the determinant of £ is of finite order, hence
unit-root. We first prove that & is unit-root as well. If r is the rank of &!, since

Y al(&) = af(det(&)) =0 and af(&) < --- < al(&)),
i=1
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it suffices to show that a”(£]) = 0. Let F — T be the maximal trivial quotient of F. By
maximality, it lifts to a quotient Fy — Ty, where 7 is a constant F-isocrystal. The overcon-
vergent F-isocrystal Eg satisfies the assumptions of Proposition 3.3.1.1, hence 7y is finite. As
the F-isocrystal JFy is isoclinic and it admits a non-zero quotient which is finite, it is unit-root.
This implies that a7(£]) = 0, as we wanted.

We now prove that & has rank 1. Since &! is unit-root, by [Ked16, Theorem 3.9], the
functor (£1) — (&) is an equivalence of categories. Therefore, if & has a constant subquotient,
the same is true for &. But &) is irreducible by assumption, thus it has to be itself a constant
F-isocrystal. Since irreducible constant (@p—linear) F-isocrystals have rank 1, this ends the
proof. [

Remark 3.3.1.3. The statement of Theorem 3.3.1.2 is false in general if we do not assume that
Fo C & is of minimal slope. A counterexample is provided in [Ked16, Example 5.15].

3.3.2 Some consequences

Corollary 3.3.2.1. Let Sg be an overconvergent F-isocrystals and Fy a subobject of &y of mini-
mal generic slope. If ET is semi-simple, then the restriction morphism Hom(€, 1) — Hom(F, 1)
18 surjective.

Proof. As E' is semi-simple if we replace Eg with its semi-simplification with respect to a Jordan—
Hélder filtration, we do not change the isomorphism class of £7. Thus we may and do assume
that Sg is semi-simple. The proof is then an induction on the number n of summands of some
decomposition of 5(]; in irreducible overconvergent F-isocrystals. If n = 1 this is an immediate
consequence of Theorem 3.3.1.2. Suppose now that the result is known for every positive integer
m < n. Take an irreducible subobject Qg of Eg, write Ho := Gy X ¢, Fo and consider the following
commutative diagram with exact rows and injective vertical arrows

0 > H > F > F/H —— 0

[

0 > G > £ »£/G —— 0.

As 53 is semi-simple, the quotient E(J)r —» 55 / Qg admits a splitting. This implies that the lower
exact sequence splits. We apply the functor Hom(—, 1) and we get the following commutative
diagram with exact rows

0 —— Hom(£/G,1) —— Hom(&,1) —— Hom(G,1) —— 0

! | |

0 —— Hom(F/#H,1) —— Hom(F,1) —— Hom(H, 1).
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Since Ho and Fy/H, are subobjects of minimal slope of Gy and &/Gy respectively, by the
inductive hypothesis, the left and the right vertical arrows are surjective. By diagram chasing,
this implies that the central vertical arrow is also surjective, as we wanted. O

Remark 3.3.2.2. By the theory of weights, if 53 is pure then £ is semi-simple, hence one can
apply Theorem 3.3.2.1 in this situation. The theorem is instead false without the assumption
that £ is semi-simple. For example, when Xy = G, ,» there exits a non-trivial extension

0—1) =& — (1)@ — 0,

which does not split in ISOCT(XO). If 7y C & is the rank 1 trivial subobject of &, then the map
Hom(&, 1) — Hom(F, 1) is the zero map, even if Hom(F,1) = Q

-
We end the section presenting a variant of Corollary 3.3.2.1, where we consider morphisms
in F-Isoc'(X)).

Corollary 3.3.2.3. Let Sg be an algebraic semi-simple overconvergent F-isocrystals with con-
stant Newton polygons and of minimal slope equal to 0. The restriction morphism Hom(&y, 1) —
Hom(&}, 1¢) is an isomorphism.

Proof. Since Eg is semi-simple, €T is semi-simple as well. By Theorem 3.3.2.1, the restriction
morphism Hom(€, 1) — Hom(E, 1) is surjective. As the group G(&)*" is reductive (Corollary
3.2.3.7), the action of the absolute Frobenius F' on Hom(&, 1) and Hom(&EY, 1) is semi-simple,
so that the restriction morphism

Hom(&y, 1y) = Hom(&, 1)F — Hom(E', 1)F = Hom(&), 1)

is still surjective. The injectivity follows from the fact that & /&} has positive slopes. Indeed,
this implies that there are no non-zero morphisms from & to 1 which factor through &/&}. O

3.4 An extension of the theorem of Lang—Néron

3.4.1 p-torsion and p-divisible groups

We exploit here Corollary 3.3.2.1 to prove the following result on the torsion points of abelian

varieties. Let F C k be a finitely generated field extension and let kP be a perfect closure of
k.

Theorem 3.4.1.1. If A be an abelian variety over k such that Tryp(A) = 0, then the group
A(KPeD) s s finite.

As we have already discussed in Remark 3.1.2, thanks to Theorem 3.1.2.1, it is enough to
show that A[p>](kPeT) is finite.
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Notation 3.4.1.2. Throughout §3.4, let ky C k be a finitely generated field such that k = Fk
and such that there exists an abelian variety Ag/ko with A >~ Ay ®y, k. Let F, be the algebraic
closure of F, in ky. We choose a smooth geometrically connected variety X, over F,, with
F,(Xo) =~ ko and such that there exists an abelian scheme f; : 2y — X, with constant Newton
polygons and generic fiber Ag/kg. We denote by X and 2 the extension of scalars of X, and

2[0 to F.

Lemma 3.4.1.3. If |A[p>®](kP*)| = oo, then there exists an injective morphism (Q,/Z,)x —
Q[[poo]ét'

Proof. We first prove that the group A[p>](kP°™) is isomorphic to A[p>°](X), showing thereby
that A[p>]¥(X) is infinite as well. As kP! is a perfect field, the map

AN (RPT) — A" (k7)) = A[p™]" (k),

induced by the quotient A[p>] — A[p™®]¢, is an isomorphism. In addition, as the Newton
polygons of f : A — X are constant, the étale sheaves A[pi]¢* are locally constant on X.
Therefore, since X is smooth, the restriction morphism A[p>](X) — A[p>=]|**(k) induced by
the inclusion of the generic point Spec(k) < X is an isomorphism. These two observations
show that A[p>®](kPet) ~ A[p>]®(X), as we wanted.

Since |[A[p>]4(X)| = |A[p>=](kP*)| = oo, a standard compactness argument shows that
there exists a morphism (Q,/Z,)x — A[p>]*. For the reader convenience, we quickly recall
it. We define a partition of 2A[p>]¢*(X) in subsets {A;};cy in the following way. Let Ay := {0}
and for i > 0, let A; := A[p|%(X) \ Ap**(X). When j > 4, the multiplication by p/~
induces a map A; — A;. These maps make {A;};cy an inverse system. We claim that every
A; is non-empty. Suppose by contradiction that for some N € N, the set Ay is empty. By
construction, for every i > NN the sets A; are empty as well. Since every A, is finite, this implies
that 2A[p>°]¢(X) is also finite, which is a contradiction. As every A; is non-empty, by Tychonoff’s
theorem, the projective limit lim A; is non-empty. The choice of an element (P;);en € @Ai
induces an injective map (Q,/Z,)x < 2A[p>=]%, given by the assignment [1/p’] = P;. This yields
the desired result. [

3.4.2 Reformulation with the crystalline Dieudonné theory
We restate the classical crystalline Dieudonné theory in our setup.
3.4.2.1. Let

D : {p-divisible groups / X} — F-Crys(X/W (F))

be the crystalline Dieudonné module (contravariant) functor, where F-Crys(X/W (F)) is the
category of F-crystals (cf. [BBMS82]). In [#bid.], it is proven that this functor is fully faithful
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and D(A[p™]) 2 R! ferys: On. Extending the scalars to Q, and post-composing with the functor
of Theorem 3.2.1.2, we define a @p—linear fully faithful contravariant functor

Dy, : {p-divisible groups /X }@p — F-Isoc(X).

The functor sends the trivial p-divisible group (Q,/Z,) x,g, to the F-isocrystal (Ox,ido, ) on
X. When X = Spec(F), the functor induces an equivalence

Dyg, : {p-divisible groups /Spec(F)}@p = F-Isocp 1)(Spec(F)),

where F-Isocy1(Spec(FF)) is the category of F-isocrystals with slopes between 0 and 1. Since
]D@p is compatible with base change, this implies that for every X, the functor D@p is exact, it
preserves the heights/ranks and it sends étale p-divisible groups to unit-root F-isocrystals.

3.4.2.2. By [Ete02, Théoréme 7], the F-isocrystal R fy eryseOs, Over Xy comes from an over-

convergent F-isocrystal, which we denote by Sg . Let Fy be the maximal unit-root subobject
of & and let (Fy)x be the inverse image of Fy to X, as an F-isocrystal. By the discussion in
§3.4.2.1, we have the following result.

Lemma 3.4.2.3. The quotient A[p>] — A[p>]% is sent by Dyg, to the natural inclusion (Fo)x —
(&) x-

Thanks to Lemma 3.4.2.3, we can reformulate Lemma 3.4.1.3 in the language of F-isocrystals.
Corollary 3.4.2.4. If |A[p*°](kP!)| = oo, then there exists a quotient (Fo)x — (Ox,idoy ).
Proof. Thanks to Lemma 3.4.1.3, if | A[p>°](kP*T)| = oo, then there exists an injective morphism

(Q,/Z,)x — A[p™]®. By Lemma 3.4.2.3, after we extend the scalars to @p, this morphism is
sent by D to a quotient (Fo)x — (Ox,idoy). O

3.4.3 End of the proof

We need to rephrase the finiteness of torsion points given by the theorem of Lang—Néron in
terms of morphisms of isocrystals on Xy. This will lead to the proof of Theorem 3.4.1.1. Retain
notation as in §3.4.2.2.

Proposition 3.4.3.1. If there exists a morphism £ — Ox, which is non-zero on F, then
TI‘k/F(A) 7§ 0.

Proof. The maximal trivial quotient &€ — 7T, descends to a quotient & — T, where Ty is
a constant F-isocrystal. We base change this quotient from X, to X, as a morphism of F-
isocrystals, obtaining a quotient (&))x — (7o)x in F-Isoc(X). Since 7Ty is an F-isocrystal
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coming from Spec(F,), the F-isocrystal (7p)x comes from Spec(FF). Thanks to [Ked16, Theorem
3.5], (Ty)x decomposes in F-Isoc(X) as

(To)x = (T9)x ® (OF", idgen)

where (0", ido??n) is the maximal unit-root subobject of (7g)x and n > 0. As Fy is unit-root,
it is sent via the quotient (£))x — (7o)x to a non-zero unit-root F-isocrystal, so that n > 0.
Thus, (& )x admits a quotient to (Ox,idp, ) in F-Isoc(X). Since Dy, is fully faithful, such a
quotient comes from a monomorphism (Q,/Z,) xg, < ﬁ[pw]@p in the category of p-divisible
groups with coefficients in @p. The map, after possibly multiplying it by some power of p, comes
from an injection (Q,/Z,)x — ~A[p™] of p-divisible groups over X. By Theorem 3.1.2.1, this
implies that Try/p(A) # 0. O

Proof of Theorem 3.4.1.1. Assume by contradiction that |A[p>](kPT)| = oo. By Corollary
3.4.2.4, we have a quotient (Fy)x — (Ox,idp, ) in F-Isoc(X). Forgetting the Frobenius struc-
ture, we get a quotient Fx — Oy in Isoc(X). By a descent argument (see for example the
proof of [Kat99, Proposition 1.3.2]), the morphism Fx — Ox descends to a quotient F — Oy,
in Isoc(Xj). By Theorem 3.3.2.1, the map extends to a quotient £ - Oy, in Isoc(Xy). We
obtain then a contradiction by Proposition 3.4.3.1. [

Remark 3.4.3.2. The proofs of Theorem 3.2.3.4 and Proposition 3.3.1.1 rely on the known
cases of Deligne’s conjecture. In particular, they rely on the Langlands correspondence for lisse
sheaves proven in [Laf02] and the Langlands correspondence for overconvergent F-isocrystals
proven in [Abel8]. We want to point out that to prove Theorem 3.4.1.1 we do not need to
use this theory. More precisely, when 53 is an overconvergent F-isocrystal which “comes from
geometry”, for example any overconvergent F-isocrystals appearing in §3.4, Theorem 3.2.3.4
can be proven more directly, as explained in Remark 1.4.2.11. Even in the proof of Proposition
3.3.1.1, if 53 “comes from geometry” we do not need Theorem 1.3.7.6.
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A Neutral Tannakian categories with Frobenius

We introduce in this appendix the notion of neutral Tannakian categories with Frobenius, and
we present a fundamental exact sequence for these categories. This formalism applies to the
categories of coefficient objects, as explained in Proposition 1.3.1.8. We have preferred to work
here in a more general setting in order to include some other categories, such as the category of
convergent isocrystals.

A.1 Definition and Weil group

Definition A.1.1. A neutral Tannakian category with Frobenius is a neutral Tannakian category
over some field K, endowed with a K-linear ®-autoequivalence F* : C — C.

Construction A.1.2. We fix a neutral Tannakian category with Frobenius ((NJ, F*) over some
field K. We denote by Cy the category of pairs (£, ®), where £ € C and ® is an isomorphism
between F*E and €. A morphism between two objects (£, ®) and (€', ®’) is a morphism f :
& — &' such the following diagram commutes

e 2 ¢

bl

e 2, e

Let ¥ : Cy — C be the forgetful functor sending (€, ®) to £. Write C for the smallest Tannakian
subcategory of C which contains the essential image of W.

Choose a fiber functor w of C over K. It restricts to a fibre functor of C which we will
denote by the same symbol. We write wy for the fibre functor of Cy given by the composition
woW. We define m(C,w) and m;(Cy, wp) as the Tannakian groups of C and Cy with respect to
w and wy respectively. The functor ¥ induces a closed immersion m (C,w) < m1(Cyp, wp) and
for every & = (€, ®) € Cy a closed immersion G(E,w) < G(&y, wo).

Definition A.1.3. We say that an object in Cgy is constant if its image in C is trivial, i.e.
isomorphic to 19" for some n € N. The constant objects of Cy form a Tannakian subcategory
Cest € Cq. Let m(Co, wp)®* be the Tannakian group of C.g with respect to wy. The inclusion
Cest € Cp induces a faithfully flat morphism 71(Cy,wy) — 71 (Co,wp)®". For every object
&y € Cy, we denote by G(&y,wp)®" the Tannakian group of the full subcategory (Eo)est C (Eo)
of constant objects. This induces a faithfully flat morphism G(&y,wq) — G(Ey, wp)".

A.1.4. Suppose that ((NJ, F*) admits an isomorphism of fibre functors n : w = w o F*. The
group 71 (C,w) is then endowed with an automorphism ¢ which is constructed in the following
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way. For every K-algebra R, the automorphism ¢ sends o € 7,(C,w)(R) to ' o aong, where
nr is the extension of scalars of n from K to R.

Definition (Weil group). Let W (Cp,wp) be the group scheme over K which is the semi-direct
product 7 (C,w) X Z, where 1 € Z acts on 7 (C,w) as ¢ acts on 1 (C,w). We will call W (Cy, wy)
the Weil group of Cy.

Remark A.1.5. Thanks to [Del90], we know that if K is algebraically closed, an isomorphism
n as in §A.1.4 always exists. This is not the case in general when K is not algebraically closed.
This is due to the existence of non-isomorphic algebraic groups with equivalent categories of
linear representations. For coefficient objects, an isomorphism 7 can be constructed each time
that a fibre functor exists, as it is explained in Remark 1.3.2.2.

Lemma A.1.6. Let ((NJ,F*) be a neutral Tannakian category with Frobenius which admits a
fibre functor w isomorphic to w o F*. There exists a natural equivalence of categories Cy =
Repy (W (Co,wyp)) and a natural morphism ¢ : W(Cy,wp) — m1(Co,wp) such that the following
diagram commutes

Repg (m1(Co, wo))

= JL*
Repy (W (Co,wo)),

where the equivalence Cy — Repyg(m(Co,wy)) is the one induced by the fibre functor wy. In
addition, the image of v is Zariski-dense in w1 (Co,wo).

Proof. For every (€,®) € Cy, we extend the natural representation of m(C,w) on the vector
space w(€) to a representation of W (Cp, wy). Write e for the identity point in m (C,w)(K). We
impose that (e,1) € W(Cy,wp)(K) acts on w(E) via w(P) o ne, where ng is the isomorphism
induced by n between w(€) and w(F*E). This defines an equivalence Cy — Repy (W (Cy,wp))
and a morphism ¢ : W(Cy, wy) — m1(Co, wp) satisfying the required properties. By the Tannaka
reconstruction theorem, the affine group m (Cy, w) is the pro-algebraic completion of W (Cy, wy),
thus the image of ¢ is Zariski-dense in 71 (Cy,w). O

A.2 The fundamental exact sequence

A.2.1. We briefly recall the general criterion for the exactness of sequences of Tannakian groups.

Let L % G 2 A be a sequence of affine group schemes over a field K. Write
Repx(4) & Rep (G) £ Repy (L)
for the induced sequence of functors.
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Theorem ([EHS07, Theorem A.1]). Suppose that p is faithfully flat and q is a closed immersion.
Then the sequence L < G & A is exact if and only if the following conditions are fulfilled.

(a) For every V € Repg(G), the image ¢*(V') in Repg (L) is trivial if and only if V ~ p*U
for some U € Repg(A).

(b) For every V € Repg(G), if we write W for the maximal trivial subobject of ¢*(V') in
Repk (L), there exists V' CV in Repg(G) such that ¢*(V') = W.

(c) For every W € Repg(L), there ezists V € Repg(G) such that W is a subobject of ¢*(V).

Lemma A.2.2. Let (6, F*) be a neutral Tannakian category with Frobenius and let w be a fibre
functor of C. The subgroup m(C,w) C m(Co,wo) is a normal subgroup. In particular, for
every F € C there ezists Gy € Co such that F C ¥ (Gy).

Proof. Thanks to Theorem A.2.1, the second part of the statement follows from the first one.
We may verify that the subgroup is normal after extending the field K to its algebraic closure.
Under the additional assumption that K is algebraically closed, by Remark A.1.5 there exists
an isomorphism between w and w o F*, so that we can construct the Weil group W (Cy,wy) as
defined in §A.1.4. By Lemma A.1.6, the group scheme W(Cy,wy) is endowed with a natural
morphism ¢ : W(Cp,wy) — m1(Co,wp) with Zariski-dense image. Let H be the normalizer of
m(C,w) in m(Cp, wp). The group m(C, w) is normal in W (Cy, wy), hence the K-point (e, 1) €
W (Cy, wp)(K) normalizes 71(C,w). As a consequence, i(e, 1) € m1(Cop,wp)(K) is contained in
H(K). The group W(Cy, wy) is generated by m1(C,w) and (e, 1), thus the image of ¢ is contained
in H. This implies that H = m;(Cy, wp), which shows that 7 (C,w) is normal in m(Cy, wp), as
we wanted.

]

Proposition A.2.3. LetN(é, F*) be a neutral Tannakian category over K with Frobenius and
let w be a fibre functor of C. The following statements hold.

(i) The morphisms constructed in §A.1.2 and §A.1.3 form an exact sequence

1— 7r1(C,w) — 7T1(C0,a)0) — Fl(Co,wO)CSt — 1.

(ii) For every & = (€, ®) € Cy and every F € (E), there exists Gy € (&) such that F C ¥ (Gy).

(iii) For every object & = (€, P) € Cy, the exact sequence of (i) sits in a commutative diagram
with exact rows

1 —— 7T1(C,(A)) — Wl(CO,wO> — 7T1(C0,W0>68t — 1

| I !

1 —— G, 7) — G(&,7) —— G(Epy 1) —— 1,
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where the vertical arrows are the natural quotients.

(iv) The affine group scheme m1(Co,wq)" is isomorphic to the pro-algebraic completion of 7

over K and G(&y, x)*" is a commutative algebraic group.

Proof. We already know that the sequence of part (i) is exact on the left and on the right. It
remains to show the exactness in the middle using Theorem A.2.1. Condition (a) is satisfied
by construction. For condition (b) we notice that a ®-functor sends trivial objects to trivial
objects. Therefore, for every (£,®) € Cop, the maximal trivial subobject F C &£ is sent by
F* to the maximal trivial subobject of F*(£). This means that the restriction of ® to F*(F)
defines an isomorphism between F*(F) and F that we denote by ®|z. The pair (F, ®|#) is the
subobject of (&€, ®) with the desired property. Condition (c) is proven in Lemma A.2.2.

For part (ii) we notice that the subgroup G(€,w) C G(&y,wyp) is a quotient of m (C,w) C
m1(Co,wp), thus it is normal. By Theorem A.2.1, this implies the desired result. The diagram
of part (iii) is obtained by taking the natural morphisms of the Tannakian groups. To prove
that the lower sequence is exact we proceed as in part (i), replacing Lemma A.2.2 with part
(ii). Finally, the category C.g is equivalent to Repg(Z), thus m(Cg, wp)®" is isomorphic to
the pro-algebraic completion of Z over K. In particular, for every & € Cy, the algebraic group
G(&y,wo), being a quotient of 71 (Cyp, wp), is commutative. This concludes the proof. ]
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