On the p-adic slope filtration

Marco D'Addezio

Institut de Recherche Mathématique Avancée (CNRS), Strasbourg

27 November 2024

Cohomology theories in positive characteristic

Elliptic curves

Let p be a prime number, \mathbb{F} an algebraic closure of \mathbb{F}_p .

$$E \subseteq \mathbb{P}^2_{\mathbb{F}}$$
 non-singular cubic curve

 $m: E \times_{\mathbb{R}} E \to E$ algebraic commutative group law

$$E(\mathbb{F}) = \bigcup_{i \geq 1} E(\mathbb{F}_{p^i}) \qquad \text{infinite torsion group}.$$

ℓ -adic Tate module

If $\ell \neq p$ is a prime, n > 1

$$E(\mathbb{F})[\ell^n] := \ker \left(E(\mathbb{F}) \xrightarrow{\ell^n} E(\mathbb{F}) \right) \simeq (\mathbb{Z}/\ell^n \mathbb{Z})^{\oplus 2}$$

$$T_{\ell}(E) := \varprojlim_{-} E(\mathbb{F})[\ell^{n}] \simeq \mathbb{Z}_{\ell}^{\oplus 2}$$
 is a good $H_{1}(E, \mathbb{Z}_{\ell})$.

p-torsion

p-adic Tate module

$$E(\mathbb{F})[p^n] \simeq \begin{cases} \mathbb{Z}/p^n\mathbb{Z} & \text{(ordinary)} \\ 0 & \text{(supersingular)} \end{cases}$$
$$\rightsquigarrow \operatorname{rk}_{\mathbb{Z}_p}(T_p(E)) < \operatorname{rk}_{\mathbb{Z}_\ell}(T_\ell(E)).$$

If
$$E = \{y^2z = x(x-z)(x-\lambda z)\}$$
 with $\lambda \in \mathbb{F} \setminus \{0,1\}$ and $p \neq 2$, then

$$E(\mathbb{F})[p^n] = 0 \Leftrightarrow \sum_{i=0}^m {m \choose i}^2 \lambda^i = 0, \text{ where } m := \frac{p-1}{2}.$$

ordinary

supersingular

Group scheme approach

$$E \colon \mathrm{Alg}_{\mathbb{F}} \to \mathrm{Grp}^{\mathrm{com}}$$

 $R \mapsto E(R).$

Scheme-theoretic torsion

$$E[p^n] := \ker(E \xrightarrow{p^n} E) \in \operatorname{Fun}(\operatorname{Alg}_{\mathbb{F}}, \operatorname{Grp}^{\operatorname{com}}).$$

Representability

There exists a Hopf algebra A_n over \mathbb{F} of dimension p^{2n} such that

$$E[p^n](R) = \operatorname{Hom}_{\mathbb{F}}(A_n, R).$$

$$0\to E[p^n]^{\inf}\to E[p^n]\to E(\mathbb{F})[p^n]\to 0\quad (slope\ filtration)$$
 with $E[p^n]^{\inf}(\mathbb{F})=0.$

Dieudonné module

$$E[p^{\infty}] \colon Alg_{\mathbb{F}} \to Grp$$

$$R \mapsto \bigcup_{n>1} E[p^n](R)$$

is a p-divisible group (or Barsotti-Tate group).

Definition (F-crystal)

Let W be the ring of Witt vectors of \mathbb{F} endowed with the Frobenius lift $\sigma \colon W \to W$. An F-crystal over \mathbb{F} is a finitely generated W-module M endowed with a map

$$\Phi_M: M^{\sigma} \to M,$$

which is an isomorphism after inverting p.

Theorem (Dieudonné)

There exists a fully faithful functor

$$\{p\text{-divisible groups}/\mathbb{F}\} \xrightarrow{\mathbb{D}} \{F\text{-crystals}/\mathbb{F}\}.$$

Slopes

Theorem (Dieudonné-Manin)

For every F-crystal (M, Φ_M) over \mathbb{F} there exists $S \subseteq \mathbb{Q}$ such that

$$M\left[\frac{1}{p}\right] = \bigoplus_{s/r \in S} M_{s/r}\left[\frac{1}{p}\right]$$

and each $M_{s/r}$ is generated by $v \in M_{s/r}$ such that $(\Phi_M)^r v = p^s v$.

Definition

S is the set of slopes of (M, Φ_M) .

For
$$\mathbb{D}(E[p^{\infty}])$$

$$S = \begin{cases} \{0, 1\} & E \text{ ordinary,} \\ \{1/2\} & E \text{ supersingular.} \end{cases}$$

Cohomology theories

$$\mathbb{D}(E[p^{\infty}]) \simeq (W^{\oplus 2}, \Phi_E)$$
 is a good $H_1(E, W)$

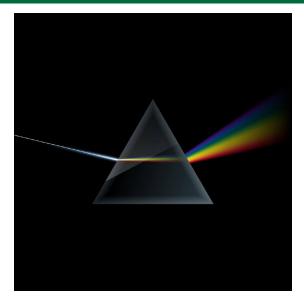
ℓ -adic étale cohomology $(T_{\ell}(E)^*)$

{Algebraic varieties over \mathbb{F} } \rightarrow {Graded finitely generated \mathbb{Z}_{ℓ} -modules} $X \mapsto H_{\mathrm{et}}^{\bullet}(X, \mathbb{Z}_{\ell})$

Crystalline cohomology $(\mathbb{D}(E[p^{\infty}])^*)$

 $\{\text{Smooth projective varieties over } \mathbb{F}\} \to \{\text{Graded } F\text{-crystals over } \mathbb{F}\}$ $X \mapsto H^{\bullet}_{cris}(X/W)$

Diffraction of cohomology theories



Local systems

Algebraic varieties in families

 $f\colon Y\to X$ smooth proper morphism of smooth connected varieties over \mathbb{F} .

ℓ -adic local systems (lisse sheaves)

For $x \in X(\mathbb{F})$,

$$R^i f_{\mathrm{et}*} \mathbb{Q}_{\ell} : \pi_1^{\mathrm{et}}(X, x) \to \mathrm{GL}(H^i(Y_x, \mathbb{Q}_{\ell})) \in \mathrm{LS}_{\ell}(X).$$

p-adic local systems (F-isocrystals)

$$R^i f_{cris*} \mathcal{O}_{Y, cris} \in F\text{-Isoc}(X).$$

Understanding F-isocrystals

If X is affine, it lifts to \mathfrak{X}/W together with a Frobenius lift $F:\mathfrak{X}\to\mathfrak{X}$.

F-isocrystals as flat connections

$$\operatorname{F-Isoc}(X) = \left\{ (\mathcal{M}, \nabla, \Phi_{\mathcal{M}}) \;\middle|\; \begin{array}{l} \mathcal{M} \text{ vector bundle over } \mathfrak{X}[\frac{1}{p}], \\ \nabla \colon \mathcal{M} \to \mathcal{M} \otimes \Omega^1_{\mathfrak{X}} \text{ flat connection,} \\ \Phi_{\mathcal{M}} \colon F^* \mathcal{M} \xrightarrow{\sim} \mathcal{M} \text{ compatible with } \nabla. \end{array} \right\}.$$

Example

Let $K := W[\frac{1}{n}]$ and

$$K\langle t \rangle := \left\{ \sum_{i=0}^{\infty} a_i t^i \in K[[t]] \mid v_p(a_i) \to \infty \right\}$$

$$\operatorname{F-Isoc}(\mathbb{A}^1_{\mathbb{F}}) = \left\{ (M, D_t, \varphi) \left| \begin{array}{l} M \text{ free } K\langle t \rangle\text{-module,} \\ D_t : M \to M \text{ derivation compatible with } \partial_t, \\ \varphi : M^\sigma \xrightarrow{\sim} M \text{ isomorphism such that} \\ D_t \circ \varphi = pt^{p-1}\varphi \circ D_t. \end{array} \right\}.$$

Slope filtration

Theorem (Grothendieck, Katz)

For $(\mathcal{M}, \Phi_{\mathcal{M}}) \in \text{F-Isoc}(X)$, after shrinking X, there is a unique filtration

$$0 = S_0(\mathcal{M}) \subsetneq S_1(\mathcal{M}) \subsetneq \cdots \subsetneq S_m(\mathcal{M}) = \mathcal{M}$$

such that each S_i/S_{i-1} is of pure slope s_i and $s_1 < \cdots < s_m$.

Example (Legendre family)

 $f: \mathcal{E} \to X$ Legendre family of elliptic curves, $\mathcal{M} := R^1_{\mathrm{cris}*} \mathcal{O}_{\mathcal{E},\mathrm{cris}}$, and $U := X^{\mathrm{ord}}$,

$$S_1(\mathcal{M}_U) \subsetneq \mathcal{M}_U$$
 (infinitesimal part)

is of rank 1. On the other hand, $R^1 f_{\text{et}*} \mathbb{Q}_{\ell}$ is irreducible. They tell different stories!

Example (Legendre family)

 \mathcal{M} has regular singularities, whereas $S_1(\mathcal{M}_U)$ does not have regular singularities. Even when passing to $U' \rightarrow U$, it does not acquire regular singularities.

Definition (Overconvergent F-isocrystals)

$$F\operatorname{-Isoc}^{\dagger}(X) \subseteq F\operatorname{-Isoc}(X)$$

is the category of F-isocrystals that acquire regular singularities after passing to a de Jong alteration $X' \rightarrow X$.

Monodromy groups

Monodromy groups

Definition (ℓ -adic case)

For $\mathcal{V}_{\ell} \in LS_{\ell}(X)$,

 $G(X, \mathcal{V}_{\ell}) := \text{Zariski closure of the image of the representation}$

$$\langle \mathcal{V}_{\ell} \rangle_{\mathrm{LS}_{\ell}(X)}^{\otimes} = \mathrm{Rep}_{\mathbb{Q}_{\ell}}(G(X, \mathcal{V}_{\ell})).$$

Definition (p-adic case)

For $(\mathcal{M}, \Phi_{\mathcal{M}}) \in \text{F-Isoc}^{\dagger}(X)$,

$$G(X,\mathcal{M}) \subseteq G^{\dagger}(X,\mathcal{M})$$

$$\langle \mathcal{M} \rangle_{\mathrm{Isoc}(X)}^{\otimes} = \mathrm{Rep}_K(G(X,\mathcal{M})) \text{ and } \langle \mathcal{M} \rangle_{\mathrm{Isoc}^{\dagger}(X)}^{\otimes} = \mathrm{Rep}_K(G^{\dagger}(X,\mathcal{M})).$$

Main results

Theorem (Independence)

If $\mathcal{V}_{\ell} \in LS_{\ell}(X)$ and $(\mathcal{M}, \Phi_{\mathcal{M}}) \in F\text{-Isoc}^{\dagger}(X)$ come from the cohomology of a smooth proper family, there exists G over $\overline{\mathbb{Q}}$ such that

$$G_{\overline{\mathbb{Q}}_{\ell}} = G(X, \mathcal{V}_{\ell})^{\circ}_{\overline{\mathbb{Q}}_{\ell}} \text{ and } G_{\overline{K}} = G^{\dagger}(X, \mathcal{M})^{\circ}_{\overline{K}}.$$

Theorem (Crew's parabolicity conjecture)

For $(\mathcal{M}, \Phi_{\mathcal{M}}) \in \text{F-Isoc}^{\dagger}(X)$ with constant slopes, then

$$G(X, \mathcal{M}) \subseteq G^{\dagger}(X, \mathcal{M})$$

is the stabiliser of the slope filtration. Moreover, if \mathcal{M} is semi-simple in $\operatorname{Isoc}^{\dagger}(X)$, then $G(X, \mathcal{M})$ is a parabolic subgroup.

These results form a new bridge between ℓ -adic lisse sheaves and p-divisible groups.

Main results

Applications

- Semi-simplicity of geometric *p*-adic representations.
- Kedlaya minimal slope conjecture (DA, Tsuzuki).
- Finiteness results for torsion points of abelian varieties (Ambrosi–DA).
- Determination of π_0 of Igusa varieties (van Hoften-Xiao Xiao).
- Characteristic p analogues of the Mumford-Tate and André-Oort conjectures (Jiang).
- Chai-Oort Hecke orbit conjecture for Shimura varieties (DA-van Hoften).

Theorem (Local refinement, DA-van Hoften)

If $\mathcal{M} \in \operatorname{Isoc}^{\dagger}(X)$ is semi-simple, then for every $x \in X(\mathbb{F})$

$$G(X^{/x}, \mathcal{M}) \subseteq G(X, \mathcal{M})$$

is the unipotent radical.

Hecke orbit conjecture

The conjecture in the Siegel case

 \mathcal{A}_q : Moduli space of principally polarised abelian varieties over \mathbb{F} of dimension g.

Definition (Hecke orbit)

For $x \in \mathcal{A}_q(\mathbb{F})$ representing A_x , we define

$$\mathcal{H}(x) := \{ y \in \mathcal{A}_g(\mathbb{F}) \mid \exists A_y \xrightarrow{\text{isog}} A_x \}.$$

Over the complex numbers, each Hecke orbit is dense in $\mathcal{A}_q(\mathbb{C})$. This follows from the fact that $\operatorname{Sp}_{2q}(\mathbb{Q})$ is dense in $\operatorname{Sp}_{2q}(\mathbb{R})$.

The conjecture in the Siegel case

Newton stratification

For every isogenous class of p-divisible groups ξ , there exists a locally closed subschemes $\mathcal{N}_{\xi} \subseteq \mathcal{A}_g$, called *Newton stratum*, parametrising abelian varieties over \mathbb{F} with isogenous p-divisible groups. We have

$$\mathcal{A}_g(\mathbb{F}) = \bigsqcup_{\xi} \mathcal{N}_{\xi}(\mathbb{F}).$$

Remark

If $x \in \mathcal{N}_{\xi}(\mathbb{F})$, then $\mathcal{H}(x) \subseteq \mathcal{N}_{\xi}(\mathbb{F})$.

(Weak) Hecke orbit conjecture for \mathcal{A}_g

The Hecke orbit of $x \in \mathcal{A}_g(\mathbb{F})$ is Zariski-dense in the Newton stratum $\mathcal{N}_{\xi} \subseteq \mathcal{A}_g$ containing it.

Generalised Serre–Tate coordinates

Definition

A (connected) Dieudonné-Lie W-algebra is a triple $(\mathfrak{a}^+, \varphi_{\mathfrak{a}^+}, [-, -])$ where $(\mathfrak{a}^+, \varphi_{\mathfrak{a}^+})$ is a free F-crystal over \mathbb{F} with slopes in [0,1) and

$$[-,-]:\mathfrak{a}^+\times\mathfrak{a}^+\to\mathfrak{a}^+$$

is a Lie bracket compatible with $\varphi_{\mathfrak{a}^+}$. It is *integrable* if the BCH formula is well defined over W.

Given an integrable Dieudonné–Lie W-algebra \mathfrak{a}^+ we constructed the following objects.

- $\tilde{\Pi}(\mathfrak{a}^+)$: Perfect formal group scheme $(\hat{\mathbb{A}}^{n,\mathrm{perf}}_{\mathbb{F}}, m_{\mathrm{Lie}})$.
- $-\Pi(\mathfrak{a}^+)\subset \tilde{\Pi}(\mathfrak{a}^+)$: Profinite semi-perfect group scheme.
- $-Z(\mathfrak{a}^+) := \tilde{\Pi}(\mathfrak{a}^+)/\Pi(\mathfrak{a}^+)$ fpqc sheaf over $\mathrm{Alg}_{\mathbb{R}}^{\mathrm{op}}$.

Lemma

If $(\mathfrak{a}^+, \varphi_{\mathfrak{a}^+})$ admits the slope decomposition, the sheaf $Z(\mathfrak{a}^+)$ is represented by $\hat{\mathbb{A}}_{\mathbb{F}}^n$.

Generalised Serre–Tate coordinates

Special formal subvarieties

Every $\mathcal{N}_{\mathcal{E}}$ admits points $x \in \mathcal{N}_{\mathcal{E}}(\mathbb{F})$ such that

$$Z(\mathfrak{a}^+) \hookrightarrow \mathcal{N}_{\xi}^{/x}$$

for explicit $(\mathfrak{a}^+, \varphi_{\mathfrak{a}^+}, [-, -])$.

If $(\mathfrak{a}^+, \varphi_{\mathfrak{a}^+})$ is of slope 0, then [-, -] = 0 and $Z(\mathfrak{a}^+) \simeq \hat{\mathbb{G}}_m^n$. This construction recovers Serre-Tate coordinates of ordinary abelian varieties.

Theorem (Monodromy bounds, DA-van Hoften)

$$\operatorname{Lie}(G(Z(\mathfrak{a}^+), \mathcal{M})) \subseteq \mathfrak{a}^+[\frac{1}{p}].$$