
TORSION POINTS OF ABELIAN VARIETIES AND F -ISOCRYSTALS

MARCO D’ADDEZIO

Today I will talk about a joint work with Emiliano Ambrosi. We found some new properties of
the category of F -isocrystals. Our goal was to prove a certain extension of the theorem of Lang–
Néron for abelian varieties. The starting point was my previous work on the monodromy groups
of overconvergent F -isocrystals, [D’Ad17]. The plan is to start with the statement of our result on
abelian varieties. Subsequently, I will explain the translation of the problem in terms of morphisms
of p-divisible groups. Finally, I will explain how to solve it using F -isocrystals.

Lang–Néron theorem. The theorem of Lang–Néron is a positive characteristic analogue of the
theorem of Mordell–Weil. In contrast with Mordell–Weil, in this case one has to remove the
isotrivial cases. Let Fq be a finite field, F an algebraic closure of Fq and k/F a finitely generated
field extension (e.g. k = F(t)) and let A be an abelian variety over k.

Definition 1. We say that A is traceless if for every abelian variety B/F, we have Hom(Bk, A) = 0.

Theorem 2 (Lang–Néron). If A is traceless, then the group A(k) is finitely generated.

Remark 3. Notice that the condition is also necessary because the Mordell-Weil group of a non-
zero abelian variety over F is an infinite torsion group.

Consequence. We have a chain of finite groups

A(k)tors ⊆ A(p)(k)tors ⊆ . . . ,

where the inclusions are induced by the relative Frobenius.

Question 4 (Esnault). Is the chain eventually stationary?

We gave a positive answer to her question. We use an equivalent formulation. Let kperf be a
perfect closure of k.

Theorem 5. If A is traceless, the group A(kperf)tors is finite.

First observations.

– When ` 6= p, the group scheme A[`n] is étale. Therefore, A(kperf)[`∞] = A(k)[`∞] is con-
trolled by Lang–Néron.

– The group schemes A[pn] are not étale. We have an exact sequence of p-divisible groups

0→ A[p∞]◦ → A[p∞]→ A[p∞]ét → 0 (∗)
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which splits canonically over kperf. This implies that A[p∞](kperf) = A[p∞]ét(kperf) =
A[p∞]ét(k).

– By Lang–Néron the subgroup A[p∞](k) ↪→ A[p∞]ét(k) is finite. To prove Theorem 5 one
has to bound the index of the subgroup.

Theorem 6. The natural morphism

Hom(Qp/Zp, A[p∞])→ Hom(Qp/Zp, A[p∞]ét)

is an isomorphism.

Theorem 6 ⇒ Theorem 5. Assume by contradiction |A[p∞]ét(k)| =∞. We can pile-up the points
forming an infinite non-zero tower (Pi)i∈N ∈ lim←−iA[pi]ét(k). This defines a map ϕ : Qp/Zp ↪→
A[p∞]ét by sending 1/pi 7→ Pi. By Theorem 6, ϕ lifts to Qp/Zp ↪→ A[p∞]. This contradicts
Lang–Néron. �

Remark 7. Theorem 6 holds trivially when (*) splits over k. To prove Theorem 6 we prove a weak
splitting property for (*). To do so we use the category of F -isocrystals.

F -isocrystals.
Over a point. Let κ be a perfect field, K := Frac(W (κ)) and σ the lift of the Frobenius of κ. An

F -isocrystal over κ is a finite-dimensional K-vector space E endowed with a σ-linear automorphism.
By Dieudonné–Manin classification, the F -isocrystals over κ form a semi-simple abelian category
such that the irreducible F -isocrystals are parameterized by rational numbers. For each s/r ∈ Q
we have an irreducible F -isocrystal Es/r with slopes (s/r, ..., s/r) where s/r is repeated r times (it
is a multiset). For a general F -isocrystal over κ the slopes are the union of the multisets of slopes
of the irreducible summands. The notion of slopes over κ is defined after base-change to κ.

Example 8. When A0/Fq is an abelian variety H1
crys(A0/K) is an F -isocrystal over Fq with the

F -structure induced by F := A0 → A0 the (p-th power) absolute Frobenius. The slopes of an
ordinary abelian variety are (0, 0, .., 1, 1) with g zeros and g ones. When A0 is supersingular the
slopes are the multiset (1/2, 1/2, ..., 1/2) with 1/2 repeated g times.

General base. Let X be a smooth geometrically connected variety over F such that k = F(X)1.
We have a category of crystals

Crys(X) :=

{
Crystals of coherent
OX,crys-modules

}
.

Even if the crystalline site is not functorial, its associated topos is functorial. Hence F ∗ acts on
Crys(X). We define the category of F -isocrystals as

F-Isoc(X) :=

{
(E ,Φ)

∣∣∣ E ∈ Crys(X)Q
Φ : F ∗E ∼−→ E

}
.

1It will become clearer later why we prefer to work over a finite field rather than over F, which would be the most

natural choice.



TORSION POINTS OF ABELIAN VARIETIES AND F -ISOCRYSTALS 3

The category F-Isoc(X) has different incarnations. For example, it is equivalent to the category
of convergent F -isocrystals in the sense of Ogus. The convergence condition is guaranteed by the
existence of a Frobenius structure.

Theorem 9 (Berthelot–Breen–Messing). There exists a contravariant functor

DQ : { p-div gps/ X } ⊗Q→ F-Isoc(X)

which is exact and fully faithful. The functor sends Qp/Zp 7→ (OX , id)2.

Definition 10. A unit-root F -isocrystal is an F -isocrystal which admits uniquely slope 0 at closed
points (with some multiplicity).

Lemma 11. The functor DQ induces a bijection between étale p-divisible group and unit-root F -
isocrystals.

Reduction to F -isocrystals. After the warm up with F -isocrystals we come back to the proof
of Theorem 6. Let A/X be an abelian scheme with constant slopes such that A ⊗Fq k ' A. We
define

H := DQ(A[p∞])

Hur := DQ(A[p∞]ét).

We have H ' R1fcrys∗OA and Hur ⊆ H is the maximal unit-root subobject of H. We reformulate
Theorem 6 in terms of F -isocrystals.

Theorem 12. For T = (O⊕rX ,Φ) ∈ F-Isoc(X), the morphism

Hom(H, T )→ Hom(Hur, T ) (∗∗)

is surjective.

Remark 13. When we pass from the statement of Theorem 6 to Theorem 12 we switch from a
geometric situation to an arithmetic one. This is the reason why we need to introduce the constant
F -isocrystal T and we cannot assume that Φ is the identity.

Overconvergence. In order to prove the statement we need to introduce the category of over-
convergent F -isocrystals, denoted by F-Isoc†(X). This is defined Zariski-locally using the rigid
generic fiber of X. I will not define them, but I will recall some properties we will use.

– There is a canonical functor ε : F-Isoc†(X)→ F-Isoc(X) which is an equivalence when X
is proper (e.g. over a point).

– (Kedlaya) ε is fully faithful.

– (Étesse) There exists H† ∈ F-Isoc†(X) such that ε(H†) = H (“H is overconvergent”).

The category of overconvergent F -isocrystals has some similarities with the category of lisse
sheaves. For example, the rigid cohomology groups with coefficients in overconvergent F -isocrystals
are finite dimensional. Moreover, over finite fields, we have a theory of weights for overconvergent
F -isocrystals.

2We drop the subscript “crys” from OX,crys
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Theorem 14 (Kedlaya). For E ∈ F-Isoc†(X) ι-pure of ι-weight w and every i, H i
rig(X, E) is

ι-mixed of weights ≥ w + i.

Corollary 15. If E is ι-pure, then E is semi-simple as an overconvergent isocrystal.

Remark 16. Notice that here the semi-simplicity is without Frobenius structure. This is the
analogue of the semi-simplicity of ι-pure lisse sheaves when base-changed to F. Our H† is pure of
weight 1 and it is actually semi-simple even when we consider its F -structure. This stronger result
is a consequence of the positivity of the Rosati involution, as noticed by Weil.

Warning. Hur ↪→ H is not “overconvergent” and in general the injection has no retractions.
Therefore, we have a functor ε which is fully faithful but which does not preserve semi-simplicity.
After we apply ε we obtain new subquotients. We need to control this phenomenon. A natural way
to do this is using the monodromy groups.

Monodromy groups. In order to define the monodromy groups we need to extend the field of
coefficients of the categories we have introduced. For a finite extension K/Qp we define

F-Isoc(†)(X)⊗K :=

{
(E , λ)

∣∣∣ E ∈ F-Isoc(†)(X)
λ : K → End(E) Qp-linear morphism

}
.

Taking a 2-colimit when K varies in Qp, we get

F-Isoc(†)(X)⊗Qp.

These categories are Qp-linear neutral Tannakian categories, namely abelian Qp-linear ⊗-categories,

with duals and with an exact and faithful functor to the category of (finite-dimensional) Qp-vector
spaces.

The concept of neutral Tannakian category has been introduced by Grothendieck and then fur-
ther developed by Saavendra–Rivano and Deligne. These categories constitute a linear analogue
of Galois categories. Thanks to the Tannaka duality, one can associate to a neutral Tannakian
category C an affine group scheme which completely determines the category. More precisely, C
is equivalent (in a non-canonical way) to the category of finite dimensional representations of the
group scheme.

For E† ∈ F-Isoc†(X)⊗Qp, 〈E†〉⊗ ⊆ F-Isoc†(X) is defined as the smallest category containing E†
and closed under ⊕, ⊗, duals and the operation of taking subquotients. The associated affine group
scheme is denoted by G(E†). Let E be ε(E†). We define as before, the category 〈E〉⊗ ⊆ F-Isoc(X)
and the affine group scheme G(E).

In this case, the affine group schemes G(E†) and G(E) are actually of finite type. We call them
the monodromy groups of E† and E respectively. These were initially defined by Crew. We have
the following closed embedding

???→ G(H) ⊆ G(H†)← reductive.
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In the case of lisse sheaves the monodromy groups have been intensively studied by many people,
notably Serre, Larsen–Pink, Chin. In [D’Ad17], I studied the right group exploiting the analogy
between lisse sheaves and overconvergent F -isocrysals and using the Langlands correspondence.

Example 17 (Crew). When A/k is a non-isotrivial ordinary elliptic curveG(H†) = GL2. Moreover,
there exists an exact sequence

0→ L → H → L∨(−1)→ 0

where L has rank 1 and G(H) is a Borel subgroup of GL2.

Over a point. If x := Spec(Fqn) is a closed point of X and Kn := Frac(W (Fqn)) we have a
functor

F-Isoc(x)⊗Qp = σ-Vec(Kn ⊗K Qp) ' RepQp
(Z)

forg−−→ Vec(Qp)

where the second category is the category of locally-free modules over the algebra Kn ⊗K Qp,
endowed with a σ-linear Frobenius structure. The last equivalence depends on the choice of the
embedding Kn ↪→ Qp. This functor to Vec(Qp) induces a fibre functor for F-Isoc(†)(X) ⊗ Qp by
pre-composing with the inverse image functor from X to x.

For α ∈ Q×p , we define a rank 1 constant Qp-linear F -isocrystal over Spec(Fq) as (Qp,Qp
·α−→ Qp),

denoted by Qα
p . We denote in the same way the inverse image of Q(α)

p to X via the structural mor-
phism.

Rank 1 F -isocrystals. If L ∈ F-Isoc(X)Qp
is of rank 1, there exists α ∈ Q×p such that L ⊗Q(α)

p

comes from a p-adic character of πét
1 (X) (α is necessary to kill the slope of L). If L is overconvergent,

by a theorem of Tsuzuki, the character is potentially unramified, hence by class field theory it has
finite order. Therefore, for E† ∈ F-Isoc†(X)⊗Qp, there exists α ∈ Qp such that (E†)(α) has finite
order determinant.

Theorem 18 (The global monodromy theorem). If E† ∈ F-Isoc†(X)⊗Qp is irreducible with finite

order determinant, G(E†)◦ is semi-simple.

Remark 19. By the theorem, if Q(α)
p ∈ 〈E†〉⊗ then α is a root of unity. Indeed, G(Q(α)

p ) is finite
when α is a root of unity and Gm otherwise.

Frobenius tori. We reach now the crucial part of the proof. For E† ∈ 〈H†〉⊗ and i : x ↪→
X a closed point, we have that G(i∗E†) = G(i∗E), because over a point every F -isocrystal is
overconvergent. The two groups embed in G(E†) and G(E) respectively. We already mentioned
that by the positivity of the Rosati involution, the Frobenius of H† at closed points is semi-simple.
This implies that, the groupG(i∗E†) = G(i∗E) is of multiplicative type. We define Tx(E) := G(i∗E)◦,
which is called the Frobenius torus of E at x.

Theorem 20 ([D’Ad17, Theorem 4.2.10]). For E† ∈ 〈H†〉⊗, the set of closed points x ∈ |X| such
that Tx(E) is a maximal torus of G(E†) is Zariski-dense.

The analogous result for lisse sheaves was proven by Serre, I have extended it to overconvergent F -
isocrystal using independence techniques. As Tx(E) is also contained in G(E), we get the following.

Corollary 21. G(E) contains a maximal torus of G(E†).
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We use this corollary to prove the next proposition.

Proposition 22. For E† ∈ F-Isoc†(X) ⊗ Qp irreducible with finite order determinant, if Q(α)
p ∈

〈E〉⊗ then α is a root of unity.

Remark 23. Even if the global monodromy theorem is false for F -isocrystals, Proposition 22 is
telling us that the consequence discussed in Remark 19 remains true. This will be the key to prove
Theorem 12.

We prove Proposition 22 by comparing the two monodromy groups we have introduced with two
other ones which are the geometric counterparts. The proposition ultimately follows from a count
of the dimensions of the maximal tori of the groups involved.

End of the proof of Theorem 12. We can decompose H† =
⊕
H†i with H†i ∈ F-Isoc†(X)⊗Qp

irreducible. This induces a decomposition Hur =
⊕
Hur
i .

Claim. If there exists a surjective morphism Hur
i � Q(α)

p for some α ∈ Q×p , then Hur
i = Hi '

Q(α)
p .

Claim ⇒ Theorem 12. We may assume T =
⊕

Q(αi)
p , then the LHS and the RHS of the state-

ment of Theorem 12 decompose and it suffices to show that the restriction morphism Hom(Hi,Q
(αi)
p )→

Hom(Hur
i ,Q

(αi)
p ) is surjective. This follows easily from the claim.

Proof of the claim.

– If Hi = Hur
i , then H†i ' Q(α)

p because H†i is irreducible.

– Suppose Hi 6= Hur
i , there exists βi ∈ Qp with vp(βi) < 0 such that det(Hi⊗Q(βi)

p ) has finite
order.
After twist, we have Hur

i ⊗ Q(βi)
p � Q(αβi)

p . Thus, by definition, Q(αβi)
p ∈ 〈Hi ⊗ Q(βi)

p 〉⊗.
By Proposition 22, αβi is a root of unity. On the other hand, vp(α) = 0 and vp(βi) < 0.
Contradiction.

Weak (weak) semi-simplicity. We end the talk giving another example of a structural property
deduced from the fact that G(H) is a maximal rank subgroup.

Theorem 24. The group Ext1
〈H〉⊗(Qp,Qp) vanishes.

This follows from the following abstract lemma on algebraic groups.

Lemma 25. Let K be a characteristic 0 field, G a reductive group over K, H ⊆ G a subgroup of
maximal rank (i.e. that contains a maximal torus of G), then Ext1

H(K,K) = 0.

Proof. Suppose by contradiction the existence of a non-trivial extension of K by itself. This implies
that there exists a surjective morphism ϕ : H � Ga. The subgroup K := Ker(ϕ) has maximal rank
in G because the same is true for H. Looking at the Lie algebras, one can prove that K◦ = NG(K)◦.
On the other hand H◦ ⊆ NG(K)◦, contradiction. �
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