TORSION POINTS OF ABELIAN VARIETIES AND F-ISOCRYSTALS

MARCO D’ADDEZIO

Today I will talk about a joint work with Emiliano Ambrosi. We found some new properties of
the category of F-isocrystals. Our goal was to prove a certain extension of the theorem of Lang—
Néron for abelian varieties. The starting point was my previous work on the monodromy groups
of overconvergent F-isocrystals, [D’Ad17]. The plan is to start with the statement of our result on
abelian varieties. Subsequently, I will explain the translation of the problem in terms of morphisms
of p-divisible groups. Finally, I will explain how to solve it using F-isocrystals.

Lang—Néron theorem. The theorem of Lang—Néron is a positive characteristic analogue of the
theorem of Mordell-Weil. In contrast with Mordell-Weil, in this case one has to remove the
isotrivial cases. Let Fy be a finite field, F an algebraic closure of F, and k/F a finitely generated
field extension (e.g. k = F(t)) and let A be an abelian variety over k.

Definition 1. We say that A is traceless if for every abelian variety B/F, we have Hom(By, A) = 0.
Theorem 2 (Lang—Néron). If A is traceless, then the group A(k) is finitely generated.

Remark 3. Notice that the condition is also necessary because the Mordell-Weil group of a non-
zero abelian variety over F is an infinite torsion group.

Consequence. We have a chain of finite groups
A(k)tors - A(p) (k)tors c... )
where the inclusions are induced by the relative Frobenius.
Question 4 (Esnault). Is the chain eventually stationary?

We gave a positive answer to her question. We use an equivalent formulation. Let kP be a
perfect closure of k.

Theorem 5. If A is traceless, the group A(kP) o is finite.

First observations.

~ When £ # p, the group scheme A[("] is étale. Therefore, A(kP*H)[(>®] = A(k)[(>] is con-
trolled by Lang—Néron.

— The group schemes A[p"] are not étale. We have an exact sequence of p-divisible groups

0= A[p™]° = A[p™] = A[p™]* =0 (x)

Date: December 2, 2019.



2 MARCO D’ADDEZIO

which splits canonically over kP°™f. This implies that A[p™](kPef) = A[p>®]ét(kPet) =

Alp>I% (k).

— By Lang Néron the subgroup A[p™](k) — A[p™=]®*(k) is finite. To prove Theorem 5 one
has to bound the index of the subgroup.

Theorem 6. The natural morphism
Hom(Qp/Zp, Alp™]) — Hom(Qy/Zy, A1)
s an tsomorphism.
Theorem 6 = Theorem 5. Assume by contradiction |A[p°°]et(k:)| = oco. We can pile-up the points
forming an infinite non-zero tower (P;);en € @iA[pZ]et(k:). This defines a map ¢ : Q,/Z, —

A[p™]® by sending 1/p* — P,. By Theorem 6, ¢ lifts to Q,/Z, — A[p>°]. This contradicts
Lang—Néron. O

Remark 7. Theorem 6 holds trivially when (*) splits over k. To prove Theorem 6 we prove a weak
splitting property for (*). To do so we use the category of F-isocrystals.

F-isocrystals.

Over a point. Let k be a perfect field, K := Frac(W (x)) and o the lift of the Frobenius of k. An
F-isocrystal over « is a finite-dimensional K-vector space F endowed with a o-linear automorphism.
By Dieudonné-Manin classification, the F-isocrystals over & form a semi-simple abelian category
such that the irreducible F-isocrystals are parameterized by rational numbers. For each s/r € Q
we have an irreducible F-isocrystal /. with slopes (s/r,...,s/r) where s/r is repeated 7 times (it
is a multiset). For a general F-isocrystal over % the slopes are the union of the multisets of slopes
of the irreducible summands. The notion of slopes over « is defined after base-change to k.

Example 8. When Ag/F, is an abelian variety H_,,(Ao/K) is an F-isocrystal over Fq with the
F-structure induced by F' := Ay — Ap the (p-th power) absolute Frobenius. The slopes of an
ordinary abelian variety are (0,0,..,1,1) with g zeros and g ones. When A is supersingular the
slopes are the multiset (1/2,1/2,...,1/2) with 1/2 repeated g times.

General base. Let X be a smooth geometrically connected variety over F such that k = F(X)!.
We have a category of crystals

Crys(X) := {

Even if the crystalline site is not functorial, its associated topos is functorial. Hence F* acts on
Crys(X). We define the category of F-isocrystals as

€ € Crys(X)g
o:F*SE 7

Crystals of coherent
Ox crys-modules )
F-Isoc(X) := {(5,@)(

¢ will become clearer later why we prefer to work over a finite field rather than over F, which would be the most
natural choice.
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The category F-Isoc(X) has different incarnations. For example, it is equivalent to the category
of convergent F-isocrystals in the sense of Ogus. The convergence condition is guaranteed by the
existence of a Frobenius structure.

Theorem 9 (Berthelot-Breen—-Messing). There exists a contravariant functor

Dq : { p-div gps/ X } ® Q — F-Isoc(X)
which is evact and fully faithful. The functor sends Qp/Z, — (Ox,id)*.

Definition 10. A unit-root F-isocrystal is an F-isocrystal which admits uniquely slope 0 at closed
points (with some multiplicity).

Lemma 11. The functor Dg induces a bijection between étale p-divisible group and unit-root F -
1socrystals.

Reduction to F-isocrystals. After the warm up with F-isocrystals we come back to the proof
of Theorem 6. Let /X be an abelian scheme with constant slopes such that % ®p, & ~ A. We
define

H = Do (Ap™])
HY . — ]D)Q(Q[[poo]ét).
We have H ~ R! ferys+Og and H" C H is the maximal unit-root subobject of H. We reformulate
Theorem 6 in terms of F-isocrystals.

Theorem 12. For T = (0", ®) € F-Isoc(X), the morphism
Hom(H,T) — Hom(H"™,T) (xx)
18 surjective.

Remark 13. When we pass from the statement of Theorem 6 to Theorem 12 we switch from a
geometric situation to an arithmetic one. This is the reason why we need to introduce the constant
F-isocrystal 7 and we cannot assume that & is the identity.

Overconvergence. In order to prove the statement we need to introduce the category of over-
convergent F-isocrystals, denoted by F-Isoc'(X). This is defined Zariski-locally using the rigid
generic fiber of X. I will not define them, but I will recall some properties we will use.

— There is a canonical functor ¢ : F-Isoc'(X) — F-Isoc(X) which is an equivalence when X
is proper (e.g. over a point).
— (Kedlaya) € is fully faithful.
— (Etesse) There exists HI € F-Isoc’(X) such that e(H) = H (“H is overconvergent”).
The category of overconvergent F-isocrystals has some similarities with the category of lisse
sheaves. For example, the rigid cohomology groups with coefficients in overconvergent F-isocrystals
are finite dimensional. Moreover, over finite fields, we have a theory of weights for overconvergent
F-isocrystals.

2We drop the subscript “crys” from Ox crys
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Theorem 14 (Kedlaya). For £& € F-Isoc'(X) t-pure of t-weight w and every i, Hriig(X,é') 18
t-mized of weights > w + 1.

Corollary 15. If £ is v-pure, then £ is semi-simple as an overconvergent isocrystal.

Remark 16. Notice that here the semi-simplicity is without Frobenius structure. This is the
analogue of the semi-simplicity of t-pure lisse sheaves when base-changed to F. Our AT is pure of
weight 1 and it is actually semi-simple even when we consider its F-structure. This stronger result
is a consequence of the positivity of the Rosati involution, as noticed by Weil.

Warning. H"™ < H is not “overconvergent” and in general the injection has no retractions.
Therefore, we have a functor € which is fully faithful but which does not preserve semi-simplicity.
After we apply € we obtain new subquotients. We need to control this phenomenon. A natural way
to do this is using the monodromy groups.

Monodromy groups. In order to define the monodromy groups we need to extend the field of
coeflicients of the categories we have introduced. For a finite extension K/Q, we define

. ()
F-Isoc)(X) @ K := {(8, A) € € Flsoc (X) } )

A K — End(€) Qp-linear morphism
Taking a 2-colimit when K varies in @p, we get
F-Isoc (X)) ® Q,.

These categories are @p—lmear neutral Tannakian categories, namely abelian @p—linear ®-categories,
with duals and with an exact and faithful functor to the category of (finite-dimensional) @p—vector
spaces.

The concept of neutral Tannakian category has been introduced by Grothendieck and then fur-
ther developed by Saavendra—Rivano and Deligne. These categories constitute a linear analogue
of Galois categories. Thanks to the Tannaka duality, one can associate to a neutral Tannakian
category C an affine group scheme which completely determines the category. More precisely, C
is equivalent (in a non-canonical way) to the category of finite dimensional representations of the
group scheme.

For £F € F-Isoc(X) ®Q,, (EN® C F-Isoc'(X) is defined as the smallest category containing £T
and closed under @, ®, duals and the operation of taking subquotients. The associated affine group
scheme is denoted by G(£T). Let &€ be €(£T). We define as before, the category (£)® C F-Isoc(X)
and the affine group scheme G(&).

In this case, the affine group schemes G(ET) and G(€) are actually of finite type. We call them
the monodromy groups of £ and & respectively. These were initially defined by Crew. We have
the following closed embedding

777 — G(H) € G(HT) « reductive.
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In the case of lisse sheaves the monodromy groups have been intensively studied by many people,
notably Serre, Larsen—Pink, Chin. In [D’Ad17], I studied the right group exploiting the analogy
between lisse sheaves and overconvergent F-isocrysals and using the Langlands correspondence.

Example 17 (Crew). When A/k is a non-isotrivial ordinary elliptic curve G(H') = GLy. Moreover,
there exists an exact sequence
0—=L—H—=L(-1)—=0

where £ has rank 1 and G(H) is a Borel subgroup of GLs.

Over a point. If z := Spec(Fqn) is a closed point of X and K, := Frac(W (F4»)) we have a
functor .
F-Isoc(z) ® Q, = 0-Vec(K, ®k Q) ~ Repg, (Z) 2 Vec(Q,)

where the second category is the category of locally-free modules over the algebra K, Q@ @p,
endowed with a o-linear Frobenius structure. The last equivalence depends on the choice of the
embedding K,, < @Q,. This functor to Vec(Q,) induces a fibre functor for F-Isoc (X)) ® Q, by
pre-composing with the inverse image functor from X to z.

For o € @: , we define a rank 1 constant @p—linear F-isocrystal over Spec(FF,) as (@p, @p - @p),

denoted by @Z We denote in the same way the inverse image of @éa) to X via the structural mor-
phism.

Rank 1 F-isocrystals. If £ € F-Isoc(X )@ is of rank 1, there exists a € @; such that £ ® @éa)
p

comes from a p-adic character of m{'(X) (« is necessary to kill the slope of £). If £ is overconvergent,
by a theorem of Tsuzuki, the character is potentially unramified, hence by class field theory it has
finite order. Therefore, for £ € F-Isoc!(X) ® Q,, there exists a € Q, such that (1)@ has finite
order determinant.

Theorem 18 (The global monodromy theorem). If £T € F-Isoc!(X) ®Q, is irreducible with finite
order determinant, G(E1)° is semi-simple.

Remark 19. By the theorem, if @;a) € (€M@ then « is a root of unity. Indeed, G(@;a)) is finite
when « is a root of unity and G,, otherwise.

Frobenius tori. We reach now the crucial part of the proof. For & € (H"® and i : z —
X a closed point, we have that G(i*€) = G(i*€), because over a point every F-isocrystal is
overconvergent. The two groups embed in G(£T) and G(E) respectively. We already mentioned
that by the positivity of the Rosati involution, the Frobenius of ! at closed points is semi-simple.
This implies that, the group G(i*£") = G(i*&) is of multiplicative type. We define T}, (&) := G(i*E)°,
which is called the Frobenius torus of £ at x.

Theorem 20 ([D’Ad17, Theorem 4.2.10]). For ET € (H1)®, the set of closed points x € | X| such
that Ty(£) is a mazimal torus of G(EY) is Zariski-dense.

The analogous result for lisse sheaves was proven by Serre, I have extended it to overconvergent F-
isocrystal using independence techniques. As T, (€) is also contained in G(E), we get the following.

Corollary 21. G(€) contains a mazimal torus of G(ET).
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We use this corollary to prove the next proposition.

Proposition 22. For £ € F-Isoc'(X) ® Q, irreducible with finite order determinant, if @](3&) €
(E)® then a is a root of unity.

Remark 23. Even if the global monodromy theorem is false for F-isocrystals, Proposition 22 is
telling us that the consequence discussed in Remark 19 remains true. This will be the key to prove
Theorem 12.

We prove Proposition 22 by comparing the two monodromy groups we have introduced with two
other ones which are the geometric counterparts. The proposition ultimately follows from a count
of the dimensions of the maximal tori of the groups involved.

End of the proof of Theorem 12. We can decompose H' = P ’HI with ’HI € F-Isoc!(X) ® Q,
irreducible. This induces a decomposition H" = @ H}".

Claim. If there exists a surjective morphism H}" —» @I(,a) for some a € @; , then H}" = H; ~
Q.

Claim = Theorem 12. We may assume 7 = @@I(,ai), then the LHS and the RHS of the state-

ment of Theorem 12 decompose and it suffices to show that the restriction morphism Hom(H,, @;ai)

) —

Hom(?-[fr,@;ai)) is surjective. This follows easily from the claim.

Proof of the claim.
— If H; = H™, then HI ~ @;a) because HI is irreducible.
— Suppose H; # H}", there exists 3; € @p with v, (8;) < 0 such that det(#,; ®@§,ﬁi)) has finite

order.

After twist, we have H @ @) — Q™. Thus, by definition, Qv € (H#; ® QY)%.
By Proposition 22, af; is a root of unity. On the other hand, v,(«) = 0 and v,(5;) < 0.
Contradiction.

Weak (weak) semi-simplicity. We end the talk giving another example of a structural property
deduced from the fact that G(H) is a maximal rank subgroup.

Theorem 24. The group Ext%m@(@p,@p) vanishes.
This follows from the following abstract lemma on algebraic groups.

Lemma 25. Let K be a characteristic 0 field, G a reductive group over K, H C G a subgroup of
mazimal rank (i.e. that contains a mazimal torus of G ), then Extl (K, K) = 0.

Proof. Suppose by contradiction the existence of a non-trivial extension of K by itself. This implies
that there exists a surjective morphism ¢ : H — G,. The subgroup K := Ker(y) has maximal rank
in G because the same is true for H. Looking at the Lie algebras, one can prove that K° = Ng(K)°.
On the other hand H° C Ng(K)°, contradiction. O
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