DIEUDONNE THEORY OVER O¢

MARCO D’ADDEZIO

1. INTRODUCTION

Today we will continue our study of classifications of p-divisible groups over different bases.
In this talk, we will switch to mixed characteristic (0,p). We will consider an algebraically
closed nonarchimedean field C'/Q, with ring of integers O¢. The classification of p-divisible
groups over O¢ was obtained by Fargues and Scholze—Weinstein.

Theorem 1.1 (Fargues, Scholze-Weinstein). There ezists an equivalence of categories

T is a free Zy-module of finite rank }

{ p-div groups/ Oc } = {(T’ W) W CT®C(-1) is a C-vector subspace

Fargues proved the full faithfulness of the functor and Scholze-Weinstein the essential sur-
jectivity. The result is pretty different from the other constructions of Dieudonné modules we
have seen so far. For example, it is in terms of linear algebra rather than semi-linear algebra.
It reminds Riemann’s classification of complex abelian varieties by their Hodge structures, thus
using periods. We will come back to this difference later in the talk. We start out by explaining
how to construct this equivalence.

2. p-DIVISIBLE GROUPS OVER O¢.
Let R be a ring.

Definition 2.1. A p-divisible group over R is a sheaf G of abelian groups over (Sch/R)gppr,
such that:

(1) G= ligG[p”] (p-torsion),

(2) p: G — G surjective (p-divisible),

(3) GJ[p] is a finite locally-free group scheme.
We have a notion of Cartier dual of p-divisible groups G — GV := ligl’l-[om(G[p”],Gm) and
the one of Tate module T(G) := yan Glp"] = Hom(Q,/Z,, G) (not p-divisible of course). The
Lie algebra of G is defined as the abelian group Lie(G) := ker(G(R]e]) — G(R)).

Let us first consider the case when p is nilpotent in R. Let G be a p-divisible group over R.

Lemma 2.2 (Messing). The sheaf G is formally smooth. The completion of G along the zero
section G™ is representable by an affine formal scheme with finitely generated ideal of definition.
Moreover, the module Lie(G) is projective and when it is free, G™ ~ Spf(R[[x1,...,24]]).
Finally, if G is connected, G = G™F.

Thus G™ can be thought p-adic analytically as a fibration in open balls.
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Construction 2.3 (Logarithm when p is nilpotent). We have a group isomorphism log :
ker(G(R) — G(R/p?)) = p?Lie(G) given by

log(x) := (i(—l)”_l(x_nl)n> €

=1

with inverse
oo :'Un

exp(ze) := Z o

n=0
To make things well defined we need that eventually p*>"/n! = 0 or, in other words, that (p?)
admits a nilpotent PD-structure. If p is odd, we could have replaced everywhere p? by p.

Suppose now that R is a p-adically complete Z,-algebra and let again G/R be a p-divisible
group.

In general, G is not formally smooth. Even the basic case jiy~ is not formally smooth over
R as the module of Kéahler differentials is not projective. In this case, it is convenient to study
the restriction to those algebras over R with p nilpotent. In other words, we can make p
infinitesimal.

Definition 2.4. We define G(R) as the projective limit @N G(Ry), where Ry := R/pN+1L,
We also define Lie(G) as the Z,-module ker (G(R[e]) — G(R))) .

Construction 2.5. Starting from the logarithm isomorphism we have seen when p is nilpotent
and going to the limit, we get an isomorphism of Z,-modules log : ker(G(R) — G(Ry)) —
p?Lie(G). Since for every element z € G(R) there exists n > 0 such that p"z € ker(G(R) —
G(R1)), we can extend the logarithm uniquely to a morphism log : G(R) — p’Lie(G) ®z, Qp =
Lie(G)[1/p]. We also get the exact sequence

(2.5.1) 0= G(R) — G(R) % Lie(G)[1/p).

Example 2.6. Suppose now G = i~ and R = O¢. We have for every N > 0 that G(Ry) =
(14 m)/pN*1. Indeed every x € m is topologically nilpotent, so that (1 4+ x)?" — 1. Thus we
have G(R) = 1 4+ m. Similarly we can compute G(R[e]) = (1 +m) & O¢ so that Lie(G) = O¢.
On the other hand, G(R[e]) = G(R) = jipe=(C') thus Lie(G) = 0. Then (2.5.1) becomes

0= fip=(C) > 1+m 25 C.

Notice that this exact sequence admits also a realization with adic spaces over Spa(C,O¢),
namely

0 = iy (C) — B(1,1) 25 Gan
where G2" := (J;2, Spa(C(p"T), Oc(p"T)) and B(1,1) is the open ball centered in 1 with
radius 1.

In general, for every p-divisible group over R, we can construct an exact sequence of adic
groups
(2.6.1) 0 — Gal[p™] — G2% — Lie(G) ®z, G

over Spa(R[]%], R) as in the example we discussed.
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Construction 2.7. (Construction of fg) If T' := T(G)(C), then applying T(—)(C) to the
natural pairing G x G¥ — ppe we get T(GY)(C) = TV(1). Therefore, there is a canonical
morphism TV (1) - Hom(Q,/Zy,, G"). By adjunction, we get a map TV (1) ®z, Qp/Z, — G".
Dualizing we get G — T'(—1) ®z, pp. Passing to Lie algebras we obtain a morphism Lie(G) —
T(—1) ®z, Oc which we denote by Sg.

Theorem 2.8 (Fargues). There is a natural short exact sequence

By
0 = Lie(G) ®0, C(1) 225 T gy ¢ 225 (Lie(GY) @0, €)Y — 0.

This is analogous to the Hodge filtration on the H' of a complex abelian variety (or even a
complex torus) in terms of Lie algebras of the abelian variety and its dual.

Construction 2.9. We are now ready to define the functor of Theorem A. We send a p-divisible
group G to the pair (T, Lie(G) ®o, C e, T(G)(C) @z, C(—l)).

Proof of the full faithfulness in Theorem 1.1.

Lemma 2.10. Let G be a p-divisible group over Oc, then G ~ G° & G with G° connected
and G constant.

Proof. As O¢ is henselian, for every n, the subscheme (G[p"])° C G[p"] is a (finite flat) sub-
group’. Therefore, we have an exact sequence

0 — (G[p"))° — G[p"] — G[p"]* — 0.

Since O is strictly henselian, G[p"]¢" is constant. Finally, as O¢ is a valutative ring (normal lo-
cal ring would have been enough) with algebraically closed fraction field, Hflppf((’)c, (G[p")°) =
02. This implies that the exact sequence splits. We get the result then passing to the limit for
every n. (Il

Remark 2.11. The same result is true for p-divisible rigid-analytic groups® over O¢. This was
proven by Fargues.

For every connected p-divisible group G//Oc, let H be the p-divisible group T'(—1) ®z, fipee
and consider the morphism G — H of Construction 2.7. We have an isomorphism on the C-
points of the associated Tate modules. On Lie algebras, the induced map is the one we denoted
by Bg. We consider the exact sequence (2.6.1) for the groups involved. We have

0 —— Gad[p] » god %, Tie(G) @ G
Zl \[ Lﬁ’g
0 —— H2[p] Had 8, Lie(H) ® G,

1Use that there is an injection from the 7o of the special fiber to the mo of the generic fiber.
2Every torsor under this group has generically a rational point which then is defined over O¢ by the properness
of (G[p"])°.

3Rigid—analytic groups with finite, locally free, faithfully flat, topologically nilpotent multiplication by p.
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We check that the right square is cartesian. If (R, R") is a complete affinoid ring and = €
H%d(R, R™) goes to (Lie(G) ® G2")(R, R"), then there exists an n such that p"z comes from
gf./‘d(R, R™), because log is locally an isomorphism. As ggd and ’H%d are p-divisible rigid-analytic
group with the same p-torsion points, then z comes from ggd(R, RT) as well, so we are done.
As the right square is cartesian, we can reconstruct g;;d starting from 7" and Bg. Moreover,
thanks to Lemma 2.10, we can reconstruct the p-divisible G as Spf(H°(Y, O5)) @m)(ggd) where
Y is the neutral component of gf;d 4 |

Let k be the residue field of O¢, one has a pullback functor,

{ p-div groups/ O¢ } — { p-div groups/ k },
which then induces a mysterious functor

(T, W) T is a free Zy-module of finite rank
’ W CT®C(-1) is a C-vector subspace.

Notice that the datum of a Dieudonné module is the same as the datum of a finite free
W (k)-modules M endowed with a ¢-linear isomorphism ¢ps : M [Z%] = M [%] such that °
M C @y (M) C p~ M. Our next goal will be to give a better explanation of this functor using
a ring which admits both O¢ and W (k) as quotients.

} AN { Dieudonné modules/ W (k) }.

3. BREUIL-KISIN-FARGUES MODULE

Definition 3.1 (Fontaine).
(1) O := fm Oc/p, C* := Frac(0%);
(2) Apg = W(O).

Fix p’ € (’)bc a compatible system (p, p'/?, p!/ p2, ...) and take [p’] € Ay the Teichmiiller lift.
There exists a quotient map 0 : Ajnr = O¢ which deforms the quotient (’)bc — Oc¢/p. The
kernel of 6 is the ideal generated by £ := (p — [p’]). Notice that by the functoriality of the Witt
vectors we also have a quotient Ay, — W (k) with kernel ([p°]). Finally, as (’)bc is perfect, we
have Aj,; — (’)bc which kills p.

(Beautiful picture of Spa(Ainf) with the points zy, ¢, ¢ and k(z) := %}:g?”).

Consider Y := Spa(Aint) \ {zr}. It is an analytic adic space. We will use Y to interpret
the pairs (T, W) (classifying p-divisible groups) in a geometric way, namely as modifications of
trivial vector bundles. Ultimately, we want to attach to such a pair a Breuil-Kisin—Fargues
module. We recall the definition.

Definition 3.2. A BKF-module is a pair (M, ¢ar), where M is a finite free Ajyr-module and

oM M[%] = M[ﬁ] is a p-linear isomorphism.

4One should actually check that the adic group law gives a formal group law. This is an easy computation
on morphisms between open balls.
SWe consider the covariant Dieudonné theory.
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We will spend the rest of the talk explaining next theorem.

Theorem 3.3 (Fargues). There exists an equivalence of categories

{BKF—modules (M, opr) s.t. M C op(M) C (p(lg)M} = (T, W)}

Remark 3.4. Using Bhatt—Morrow—Scholze integral p-adic Hodge theory one can also prove
that if (M, ¢as) is the BKF-module associated to a p-divisible group G/O¢, then (M ®4
W (k), oar ®a,,, W(k)) is the covariant Dieudonné module of Gy.

inf

To construct the functor one introduces another category, which is related to both categories.

Definition 3.5. A Shtuka over SpaC” (with one leg at ¢~ '(x¢)) is a vector bundle &£ over
Y0,00) together with an isomorphism g : go*é’\y[o o\l (zo) T E\y[o o\~ (z0) meromorphic at

¢~ (zc).
We have the following result.
Theorem 3.6 (Kedlaya). The natural functor

{BKF-modules} — {Shtukas over Spa(Cb)}

s an equivalence.

This theorem is rather technical and we will not comment it too much. To construct a
quasi-inverse one has to pass from a Shtuka, which is something defined over Yy ), to a BKF-
module, which is defined on the entire Spa(Aj,¢). Thus it is a result on the extension of vector
bundles.

Another result on Shtukas we will need is the following one.

Theorem 3.7 (Kedlaya—Liu). If £ is a Shtuka, then S%b ~! Te ®z, Oy@Cb where Tg is
1

some finite free Z,-module (the ™" -action is on the right).

The theorem is not too surprising. We know that ((’)ywcb)/\ ~ W(C?) and, by a classical
theorem of Katz, if R is a perfect ring, a ¢p-module over W (R) is the same as an étale Zy-local
system over Spec(R). With this theorem we have a way to associate to a Shtuka & a finite free
Zy-module Tg. We can also extend the previous isomorphism.

1

Corollary 3.8. There is a unique @~ -equivariant isomorphism

te &y ~Tg ®z, Oy
extending the isomorphism of the theorem, where )’ := Oy[o’oo)\unzo on(zc)- Moreover, the
isomorphism is meromorphic at the points " (xc) for n > 0.

1 1

Notice that we have chosen to work with ¢ ™" so that for every r > 0, we have that ¢~ is an
endomorphism of Vjg,j. In the proof of the corollary the idea is to extend tg to a small Vg,
first and then use the observation that every quasi-compact open of ) is eventually in Yo,

after apply ¢!

enough times.

The next step is to construct a lattice Z¢, which for the BKF-modules appearing in Theorem
3.3 will be related to the C-subvectorspace W (see Remark 3.14). To construct a lattice we
need the following result.
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Lemma 3.9 (Beauville-Laszlo). Let R be a ring, f a non-zero-divisor, R the f-adic completion
of R. There is an equivalence of grupoids

Vec(R) ~ Vec(R[f 1)) X Vee(Bf~1]) Vec(R).

Remark 3.10. In other words the lemma is saying that the datum of a vector bundle over R
is the same as the one of vector bundles over R[f~!] and R together with an isomorphism of
the two over R[f1].

Before passing to ) let us make explicit the classification of modifications of trivial vector
bundles over a down-to-earth curve.

Corollary 3.11. Let X/k be a smooth curve, x € X(k) and U := X \ {z}, n > 0, then there
is an equivalence of categories
V wvector bundle/ X | ~ . @n
{(V,a) a: 0% SVl } — { k[[t]]-lattices of k((t))*"}.
The equivalence sends (V,a) = V|0, )n Sa k(1)

In our case, notice that the ring (Oy ,.)" is the &-adic completion of Ajy¢[1/p], and it is
denoted by B:{R. Its fraction field (obtained by inverting &) is denoted by Bgqr. This ring has
the property that n-th graded pieces {"Bj; /"™ B ~ C(n).

Construction 3.12. We start with a Shtuka £. As (¢ is meromorphic at z¢, we restrict tg to
an isomorphism over the punctured disk (Oy )" [¢ '], namely an isomorphism &, ® B} Bggr =~
R

Te ®z, Bar- We denote by Z¢ C Tg @z, Bqr the B:{R—lattice given by the image of &, in
8900 ®B;-R Bar.
Proposition 3.13. The functor

{Shtukas over Spa(Cb)} — {(T, W)‘ T s a free Zy-module of finite rank }

ECT®z, Bar is a B:R—lattz'ce.
which sends € to (Tg, W) is an equivalence of categories.

Remark 3.14. There is a fully faithful functor {(T, W)} — {(7,Z)} which sends (7, W) to
(T,Zw) where Zyy is the unique BJR—lattice such that

T ®z, Biz € Ew C & 1T @z, Bly)
and the image in 1T ®z, Big)/(T ®z, Biz) = T ® C(—1) is W. Notice that the last
identification holds because (1B, /B = C(-1).

End of the proof of Theorem 3.3. Putting together Theorem 3.6, Proposition 3.13 and Remark
3.14 we get Theorem 3.3.
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