
DIEUDONNÉ THEORY OVER OC

MARCO D’ADDEZIO

1. Introduction

Today we will continue our study of classifications of p-divisible groups over different bases.
In this talk, we will switch to mixed characteristic (0, p). We will consider an algebraically
closed nonarchimedean field C/Qp with ring of integers OC . The classification of p-divisible
groups over OC was obtained by Fargues and Scholze–Weinstein.

Theorem 1.1 (Fargues, Scholze–Weinstein). There exists an equivalence of categories

{ p-div groups/ OC }
∼−→
{
(T,W )

∣∣∣ T is a free Zp-module of finite rank
W ⊆ T ⊗ C(−1) is a C-vector subspace

}
,

Fargues proved the full faithfulness of the functor and Scholze–Weinstein the essential sur-
jectivity. The result is pretty different from the other constructions of Dieudonné modules we
have seen so far. For example, it is in terms of linear algebra rather than semi-linear algebra.
It reminds Riemann’s classification of complex abelian varieties by their Hodge structures, thus
using periods. We will come back to this difference later in the talk. We start out by explaining
how to construct this equivalence.

2. p-divisible groups over OC .

Let R be a ring.

Definition 2.1. A p-divisible group over R is a sheaf G of abelian groups over (Sch/R)fppf ,
such that:

(1) G = lim−→G[pn] (p-torsion),

(2) p : G→ G surjective (p-divisible),
(3) G[p] is a finite locally-free group scheme.

We have a notion of Cartier dual of p-divisible groups G 7→ G∨ := lim−→Hom(G[pn],Gm) and

the one of Tate module T (G) := lim←−p
G[pn] = Hom(Qp/Zp, G) (not p-divisible of course). The

Lie algebra of G is defined as the abelian group Lie(G) := ker(G(R[ϵ])→ G(R)).

Let us first consider the case when p is nilpotent in R. Let G be a p-divisible group over R.

Lemma 2.2 (Messing). The sheaf G is formally smooth. The completion of G along the zero
section Ginf is representable by an affine formal scheme with finitely generated ideal of definition.
Moreover, the module Lie(G) is projective and when it is free, Ginf ≃ Spf(R[[x1, . . . , xd]]).
Finally, if G is connected, G = Ginf .

Thus Ginf can be thought p-adic analytically as a fibration in open balls.
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Construction 2.3 (Logarithm when p is nilpotent). We have a group isomorphism log :

ker(G(R)→ G(R/p2))
∼−→ p2Lie(G) given by

log(x) :=

( ∞∑
i=1

(−1)n−1 (x− 1)n

n

)
ϵ

with inverse

exp(xϵ) :=
∞∑
n=0

xn

n!
.

To make things well defined we need that eventually p2n/n! = 0 or, in other words, that (p2)
admits a nilpotent PD-structure. If p is odd, we could have replaced everywhere p2 by p.

Suppose now that R is a p-adically complete Zp-algebra and let again G/R be a p-divisible
group.

In general, G is not formally smooth. Even the basic case µp∞ is not formally smooth over
R as the module of Kähler differentials is not projective. In this case, it is convenient to study
the restriction to those algebras over R with p nilpotent. In other words, we can make p
infinitesimal.

Definition 2.4. We define G(R) as the projective limit lim←−N
G(RN ), where RN := R/pN+1.

We also define Lie(G) as the Zp-module ker (G(R[ϵ])→ G(R))) .

Construction 2.5. Starting from the logarithm isomorphism we have seen when p is nilpotent
and going to the limit, we get an isomorphism of Zp-modules log : ker(G(R) → G(R1))

∼−→
p2Lie(G). Since for every element x ∈ G(R) there exists n > 0 such that pnx ∈ ker(G(R) →
G(R1)), we can extend the logarithm uniquely to a morphism log : G(R)→ p2Lie(G)⊗Zp Qp =
Lie(G)[1/p]. We also get the exact sequence

(2.5.1) 0→ G(R)→ G(R)
log−−→ Lie(G)[1/p].

Example 2.6. Suppose now G = µp∞ and R = OC . We have for every N > 0 that G(RN ) =
(1 + m)/pN+1. Indeed every x ∈ m is topologically nilpotent, so that (1 + x)p

n → 1. Thus we
have G(R) = 1 + m. Similarly we can compute G(R[ϵ]) = (1 + m) ⊕OC so that Lie(G) = OC .
On the other hand, G(R[ϵ]) = G(R) = µp∞(C) thus Lie(G) = 0. Then (2.5.1) becomes

0→ µp∞(C)→ 1 +m
log−−→ C.

Notice that this exact sequence admits also a realization with adic spaces over Spa(C,OC),
namely

0→ µp∞(C)→ B̊(1, 1)
log−−→ Gan

a

where Gan
a :=

⋃∞
n=0 Spa(C⟨pnT ⟩,OC⟨pnT ⟩) and B̊(1, 1) is the open ball centered in 1 with

radius 1.

In general, for every p-divisible group over R, we can construct an exact sequence of adic
groups

(2.6.1) 0→ Gadη [p∞]→ Gadη → Lie(G)⊗Zp Gan
a

over Spa(R[1p ], R) as in the example we discussed.



DIEUDONNÉ THEORY OVER OC 3

Construction 2.7. (Construction of βG) If T := T (G)(C), then applying T (−)(C) to the
natural pairing G × G∨ → µp∞ we get T (G∨)(C) = T∨(1). Therefore, there is a canonical
morphism T∨(1) → Hom(Qp/Zp, G

∨). By adjunction, we get a map T∨(1) ⊗Zp Qp/Zp → G∨.
Dualizing we get G→ T (−1)⊗Zp µp∞ . Passing to Lie algebras we obtain a morphism Lie(G)→
T (−1)⊗Zp OC which we denote by βG .

Theorem 2.8 (Fargues). There is a natural short exact sequence

0→ Lie(G)⊗OC
C(1)

βG(1)−−−→ T ⊗Zp C
β∨
G∨
−−→ (Lie(G∨)⊗OC

C)∨ → 0.

This is analogous to the Hodge filtration on the H1 of a complex abelian variety (or even a
complex torus) in terms of Lie algebras of the abelian variety and its dual.

Construction 2.9. We are now ready to define the functor of Theorem A. We send a p-divisible

group G to the pair
(
T, Lie(G)⊗OC

C
βG−→ T (G)(C)⊗Zp C(−1)

)
.

Proof of the full faithfulness in Theorem 1.1.

Lemma 2.10. Let G be a p-divisible group over OC , then G ≃ G◦ ⊕ Gét with G◦ connected
and Gét constant.

Proof. As OC is henselian, for every n, the subscheme (G[pn])◦ ⊆ G[pn] is a (finite flat) sub-
group1. Therefore, we have an exact sequence

0→ (G[pn])◦ → G[pn]→ G[pn]ét → 0.

Since OC is strictly henselian, G[pn]ét is constant. Finally, as OC is a valutative ring (normal lo-
cal ring would have been enough) with algebraically closed fraction field, H1

fppf(OC , (G[pn])◦) =

02. This implies that the exact sequence splits. We get the result then passing to the limit for
every n. □

Remark 2.11. The same result is true for p-divisible rigid-analytic groups3 over OC . This was
proven by Fargues.

For every connected p-divisible group G/OC , let H be the p-divisible group T (−1)⊗Zp µp∞

and consider the morphism G → H of Construction 2.7. We have an isomorphism on the C-
points of the associated Tate modules. On Lie algebras, the induced map is the one we denoted
by βG . We consider the exact sequence (2.6.1) for the groups involved. We have

0 Gadη [p∞] Gadη Lie(G)⊗Gan
a

0 Had
η [p∞] Had

η Lie(H)⊗Gan
a .

∼

log

βG

log

1Use that there is an injection from the π0 of the special fiber to the π0 of the generic fiber.
2Every torsor under this group has generically a rational point which then is defined over OC by the properness

of (G[pn])◦.
3Rigid-analytic groups with finite, locally free, faithfully flat, topologically nilpotent multiplication by p.
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We check that the right square is cartesian. If (R,R+) is a complete affinoid ring and x ∈
Had

η (R,R+) goes to (Lie(G) ⊗ Gan
a )(R,R+), then there exists an n such that pnx comes from

Gadη (R,R+), because log is locally an isomorphism. As Gadη andHad
η are p-divisible rigid-analytic

group with the same p-torsion points, then x comes from Gadη (R,R+) as well, so we are done.

As the right square is cartesian, we can reconstruct Gadη starting from T and βG . Moreover,

thanks to Lemma 2.10, we can reconstruct the p-divisible G as Spf(H0(Y,O+
Y ))⊕π0(Gadη ) where

Y is the neutral component of Gadη 4. □

Let k be the residue field of OC , one has a pullback functor,

{ p-div groups/ OC } → { p-div groups/ k },
which then induces a mysterious functor{

(T,W )
∣∣∣ T is a free Zp-module of finite rank
W ⊆ T ⊗ C(−1) is a C-vector subspace.

}
?−→ { Dieudonné modules/ W (k) }.

Notice that the datum of a Dieudonné module is the same as the datum of a finite free
W (k)-modules M endowed with a φ-linear isomorphism φM : M [1p ]

∼−→ M [1p ] such that 5

M ⊆ φM (M) ⊆ p−1M. Our next goal will be to give a better explanation of this functor using
a ring which admits both OC and W (k) as quotients.

3. Breuil–Kisin–Fargues module

Definition 3.1 (Fontaine).

(1) O♭
C := lim←−x→xp OC/p, C

♭ := Frac(O♭
C);

(2) Ainf := W (O♭
C).

Fix p♭ ∈ O♭
C a compatible system (p, p1/p, p1/p

2
, ...) and take [p♭] ∈ Ainf the Teichmüller lift.

There exists a quotient map θ : Ainf ↠ OC which deforms the quotient O♭
C ↠ OC/p. The

kernel of θ is the ideal generated by ξ := (p− [p♭]). Notice that by the functoriality of the Witt

vectors we also have a quotient Ainf ↠ W (k) with kernel ([p♭]). Finally, as O♭
C is perfect, we

have Ainf ↠ O♭
C which kills p.

(Beautiful picture of Spa(Ainf) with the points xk, xC , xC♭ and κ(x) := log |[p♭](x̃)|
log |p(x̃)| ).

Consider Y := Spa(Ainf) \ {xk}. It is an analytic adic space. We will use Y to interpret
the pairs (T,W ) (classifying p-divisible groups) in a geometric way, namely as modifications of
trivial vector bundles. Ultimately, we want to attach to such a pair a Breuil–Kisin–Fargues
module. We recall the definition.

Definition 3.2. A BKF-module is a pair (M,φM ), where M is a finite free Ainf -module and

φM : M [1ξ ]
∼−→M [ 1

φ(ξ) ] is a φ-linear isomorphism.

4One should actually check that the adic group law gives a formal group law. This is an easy computation

on morphisms between open balls.
5We consider the covariant Dieudonné theory.
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We will spend the rest of the talk explaining next theorem.

Theorem 3.3 (Fargues). There exists an equivalence of categories{
BKF-modules (M,φM ) s.t. M ⊆ φM (M) ⊆ 1

φ(ξ)
M

}
∼−→ {(T,W )}.

Remark 3.4. Using Bhatt–Morrow–Scholze integral p-adic Hodge theory one can also prove
that if (M,φM ) is the BKF-module associated to a p-divisible group G/OC , then (M ⊗Ainf

W (k), φM ⊗Ainf
W (k)) is the covariant Dieudonné module of Gk.

To construct the functor one introduces another category, which is related to both categories.

Definition 3.5. A Shtuka over SpaC♭ (with one leg at φ−1(xC)) is a vector bundle E over
Y[0,∞) together with an isomorphism φE : φ∗E|Y[0,∞)\φ−1(xC) → E|Y[0,∞)\φ−1(xC) meromorphic at

φ−1(xC).

We have the following result.

Theorem 3.6 (Kedlaya). The natural functor

{BKF-modules} →
{
Shtukas over Spa(C♭)

}
is an equivalence.

This theorem is rather technical and we will not comment it too much. To construct a
quasi-inverse one has to pass from a Shtuka, which is something defined over Y[0,∞), to a BKF-
module, which is defined on the entire Spa(Ainf). Thus it is a result on the extension of vector
bundles.

Another result on Shtukas we will need is the following one.

Theorem 3.7 (Kedlaya–Liu). If E is a Shtuka, then Ex
C♭
≃φ−1

TE ⊗Zp OY,x
C♭

where TE is

some finite free Zp-module (the φ−1-action is on the right).

The theorem is not too surprising. We know that (OY,x
C♭
)∧ ≃ W (C♭) and, by a classical

theorem of Katz, if R is a perfect ring, a φ-module over W (R) is the same as an étale Zp-local
system over Spec(R). With this theorem we have a way to associate to a Shtuka E a finite free
Zp-module TE . We can also extend the previous isomorphism.

Corollary 3.8. There is a unique φ−1-equivariant isomorphism

ιE : EY ′ ≃ TE ⊗Zp OY ′

extending the isomorphism of the theorem, where Y ′ := OY[0,∞)\
⋃

n≥0 φ
n(xC). Moreover, the

isomorphism is meromorphic at the points φn(xC) for n ≥ 0.

Notice that we have chosen to work with φ−1 so that for every r ≥ 0, we have that φ−1 is an
endomorphism of Y[0,r]. In the proof of the corollary the idea is to extend ιE to a small Y[0,r]
first and then use the observation that every quasi-compact open of Y ′ is eventually in Y[0,r]
after apply φ−1 enough times.

The next step is to construct a lattice ΞE , which for the BKF-modules appearing in Theorem
3.3 will be related to the C-subvectorspace W (see Remark 3.14). To construct a lattice we
need the following result.
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Lemma 3.9 (Beauville–Laszlo). Let R be a ring, f a non-zero-divisor, R̂ the f -adic completion
of R. There is an equivalence of grupoids

Vec(R) ≃ Vec(R[f−1])×Vec(R̂[f−1]) Vec(R̂).

Remark 3.10. In other words the lemma is saying that the datum of a vector bundle over R
is the same as the one of vector bundles over R[f−1] and R̂ together with an isomorphism of

the two over R̂[f−1].

Before passing to Y let us make explicit the classification of modifications of trivial vector
bundles over a down-to-earth curve.

Corollary 3.11. Let X/k be a smooth curve, x ∈ X(k) and U := X \ {x}, n > 0, then there
is an equivalence of categories{

(V, α)
∣∣∣ V vector bundle/ X

α : O⊕n
U → V|U

}
∼−→ { k[[t]]-lattices of k((t))⊕n}.

The equivalence sends (V, α) 7→ V|(OX,x)∧ ⊆α k((t))⊕n.

In our case, notice that the ring (OY,xC
)∧ is the ξ-adic completion of Ainf [1/p], and it is

denoted by B+
dR. Its fraction field (obtained by inverting ξ) is denoted by BdR. This ring has

the property that n-th graded pieces ξnB+
dR/ξ

n+1B+
dR ≃ C(n).

Construction 3.12. We start with a Shtuka E . As ιE is meromorphic at xC , we restrict ιE to

an isomorphism over the punctured disk (OY,xC
)∧[ξ−1], namely an isomorphism ÊxC⊗B+

dR
BdR ≃

TE ⊗Zp BdR. We denote by ΞE ⊆ TE ⊗Zp BdR the B+
dR-lattice given by the image of ÊxC in

ÊxC ⊗B+
dR

BdR.

Proposition 3.13. The functor{
Shtukas over Spa(C♭)

}
→
{
(T,W )

∣∣∣ T is a free Zp-module of finite rank
Ξ ⊆ T ⊗Zp BdR is a B+

dR-lattice.

}
which sends E to (TE ,WE) is an equivalence of categories.

Remark 3.14. There is a fully faithful functor {(T,W )} → {(T,Ξ)} which sends (T,W ) to
(T,ΞW ) where ΞW is the unique B+

dR-lattice such that

T ⊗Zp B
+
dR ⊆ ΞW ⊆ ξ−1(T ⊗Zp B

+
dR)

and the image in ξ−1(T ⊗Zp B+
dR)/(T ⊗Zp B+

dR) = T ⊗ C(−1) is W . Notice that the last

identification holds because ξ−1B+
dR/B

+
dR = C(−1).

End of the proof of Theorem 3.3. Putting together Theorem 3.6, Proposition 3.13 and Remark
3.14 we get Theorem 3.3.
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