# Monodromy groups of *F*-isocrystals

#### Marco D'Addezio

FB Mathematik und Informatik, Freie Universität Berlin

8 February 2018

# Setting

Let p be a prime, q a power of p and  $X_0$  a smooth geometrically connected variety over  $\mathbb{F}_q$ . Moreover, let  $\mathbb{Q}_q$  be  $\operatorname{Frac}(W(\mathbb{F}_q))$ .

We denote by  $Isoc^{\dagger}(X_0)$  the category of *overconvergent isocrystals* on  $X_0$ .

Lisse sheaf on  $X_0 \leadsto$  continuous  $\ell$ -adic representation of  $\pi_1^{\mathrm{\acute{e}t}}(X_0)$ 

Thanks to the Tannakian formalism:

Overconvergent isocrystal  $\leadsto$  representation of an affine group scheme

## Definition

Let  $\mathbb{K}$  be a field, a  $\mathbb{K}$ -linear neutral Tannakian category is an abelian  $\mathbb{K}$ -linear category  $\mathbb{C}$  with the following additional properties:

- 1 It is endowed with a symmetric monoidal structure  $\mathcal{C} \times \mathcal{C} \to \mathcal{C}$  that is  $\mathbb{K}$ -linear, bi-additive, associative, commutative, and it admits a unit object  $\mathbb{1}$ ;
- 2 End(1)  $\simeq \mathbb{K}$ ;
- 3  $\forall$   $M \in \mathcal{C}$  there exist  $M^{\vee}$ , ev :  $M \otimes M^{\vee} \to \mathbb{1}$  and  $\delta : \mathbb{1} \to M^{\vee} \otimes M$  such that the compositions

$$M \xrightarrow{\operatorname{id}_M \otimes \delta} M \otimes M^{\vee} \otimes M \xrightarrow{\operatorname{ev} \otimes \operatorname{id}_M} M$$

$$M^{\vee} \xrightarrow{\delta \otimes \operatorname{id}_{M^{\vee}}} M^{\vee} \otimes M \otimes M^{\vee} \xrightarrow{\operatorname{id}_{M^{\vee}} \otimes \operatorname{ev}} M$$

are the identity maps;

4 There exists a faithful exact  $\mathbb{K}$ -linear functor  $\omega: \mathcal{C} \to \mathbf{Vec}_{\mathbb{K}}$  that preserves the monoidal structure. We call such an  $\omega$  a fiber functor for  $\mathcal{C}$ .

### Reconstruction theorem

Theorem (Grothendieck, Saavedra-Rivano, Deligne)

Let  ${\mathfrak C}$  be a  ${\mathbb K}$ -linear neutral Tannakian category. Every fiber functor  $\omega$  induces an equivalence of Tannakian categories

$$\mathcal{C} \simeq \mathsf{Rep}_{\mathbb{K}}(\underline{\mathsf{Aut}}^{\otimes}(\omega)).$$

The group  $\underline{\operatorname{Aut}}^{\otimes}(\omega)$  is an affine group scheme over  $\mathbb{K}$ . It is called the *Tannakian group* of  $\mathbb{C}$  with respect to  $\omega$ , denoted by  $G(\mathbb{C}, \omega)$ .

# Functoriality

Let  $(\mathcal{C},\omega_{\mathcal{C}})$  and  $(\mathcal{D},\omega_{\mathcal{D}})$  be two  $\mathbb{K}$ -linear Tannakian categories endowed with fiber functors  $\omega_{\mathcal{C}}$  and  $\omega_{\mathcal{D}}$ . Let  $\phi:\mathcal{C}\to\mathcal{D}$  be a functor of Tannakian categories commuting with the fiber functors. Then  $\phi$  induces a natural morphism

$$\varphi^*: G(\mathfrak{D}, \omega_{\mathfrak{D}}) \to G(\mathfrak{C}, \omega_{\mathfrak{C}}).$$

# Monodromy of isocrystals

## Proposition (Ogus, Crew)

If  $X_0(\mathbb{F}_q) \neq \emptyset$ , the category  $\mathbf{Isoc}^{\dagger}(X_0)$  is a  $\mathbb{Q}_q$ -linear neutral Tannakian category.

We will assume from now on that  $X_0(\mathbb{F}_q) \neq \emptyset$ . We introduce the following notation:

- $\pi_1^{\mathrm{Isoc}^{\dagger}}(X_0)$ := the Tannakian group of  $\mathrm{Isoc}^{\dagger}(X_0)$ , called the *isocrystal fundamental group*;
- G(M):= the Tannakian group of  $\langle M \rangle^{\otimes} \subseteq \mathbf{Isoc}^{\dagger}(X_0)$ , called the monodromy group of M.

The affine group scheme G(M) is of finite type over  $\mathbb{Q}_q$  and it is a quotient of the isocrystal fundamental group.

$$\pi_1^{\operatorname{Isoc}^{\dagger}}(X_0) \twoheadrightarrow G(M).$$



### Frobenius structure

 $F_{X_0}: X_0 \to X_0$  the *q*-th power Frobenius endomorphism.

#### Definition

A Frobenius structure for M is an isomorphism  $\Phi: F_{X_0}^*M \xrightarrow{\sim} M$ . Such a pair  $(M, \Phi)$  is called an overconvergent F-isocrystal.

An overconvergent *F*-isocrystal is said to be *unit-root* if  $\forall x_0 \in |X_0|$  the roots of the Frobenius characteristic polynomial at  $x_0$  are *p*-adic units.

# Main theorem on unit-root F-isocrystals

## Theorem (Katz, Crew, Tsuzuki, Kedlaya, Shiho)

There exists a canonical equivalence of  $\mathbb{Q}_q$ -linear neutral Tannakian categories

$$\left(\begin{array}{c} \textit{unit-root} \\ \textit{overconvergent} \\ \textit{F-isocrystals} \end{array}\right) \overset{\sim}{\to} \left(\begin{array}{c} \textit{continuous} \ \mathbb{Q}_q\text{-linear} \\ \textit{representations of} \ \pi_1^{\acute{e}t}(X_0) \\ \textit{satisfying a certain} \\ \textit{condition at infinity} \end{array}\right).$$

We denote by  $\rho_{(M,\Phi)}$  the representation associated to  $(M,\Phi)$ .

# Main theorem on unit-root F-isocrystals

If  $(M,\Phi)$  is unit-root, M is controlled by the restriction of  $\rho_{(M,\Phi)}$  to  $\pi_1^{\text{\'et}}(X_0\otimes\overline{\mathbb{F}}_q)$ . For example, we have the following fact.

#### Lemma

The subgroup  $\rho_{(M,\Phi)}(\pi_1^{\operatorname{\acute{e}t}}(X_0\otimes\overline{\mathbb{F}}_q))\subseteq G(M)(\mathbb{Q}_q)$  is Zariski dense.

## Goal

### Theorem (MD'A)

Let  $A_0$  be an abelian variety over  $\mathbb{F}_q$  and M be a semi-simple overconvergent isocrystal such that  $F_{A_0}^*M\simeq M$ . Then there exists a finite étale cover  $f_0:Y_0\to A_0$  such that  $f_0^*M$  is trivial on  $Y_0$ .

### Corollary (Tsuzuki)

For every F-isocrystal on  $A_0$ , the Newton polygon of the Frobenius characteristic polynomials at closed points is independent of the point.

# The global monodromy theorem

## Proposition (Crew, Abe)

Let M be an overconvergent isocrystal of rank 1 such that  $F_{X_0}^*M\simeq M$ , then G(M) is finite.

### Sketch of the proof.

- 1 M is a rank 1 overconvergent isocrystal M that admits a Frobenius structure, thus it also admits a Frobenius structure  $\Phi$  such that  $(M, \Phi)$  is a unit-root overconvergent F-isocrystal.
- 2 As the representation  $\rho_{(M,\Phi)}$  is of rank 1, its image is commutative.
- 3 (2) and the condition at infinity on  $\rho_{(M,\Phi)}$  imply, by class field theory, that  $\rho(\pi_1^{\text{\'et}}(X_0 \otimes \overline{\mathbb{F}}_q))$  is finite.
- 4 As  $\rho(\pi_1^{\text{\'et}}(X_0 \otimes \overline{\mathbb{F}}_q))$  is dense in  $G(M)(\mathbb{Q}_q)$  we conclude.



# The global monodromy theorem

Theorem (The global monodromy theorem; Crew)

Let M be an overconvergent isocrystal such that  $F_{X_0}^*M\simeq M$ . The radical subgroup of G(M) (i.e. the greatest connected normal solvable subgroup) is unipotent.

# The case of abelian varieties

A lemma

Let  $A_0$  be an abelian variety over  $\mathbb{F}_q$ .

#### Lemma

For every overconvergent isocrystal M on  $A_0$ , the algebraic group G(M) is commutative.

#### Proof of the lemma.

Let  $m_0: A_0 \times A_0 \to A_0$  be the multiplication map of  $A_0$ , we take

$$\widetilde{m_*}: \pi_1^{\operatorname{Isoc}^\dagger}(A_0) \times \pi_1^{\operatorname{Isoc}^\dagger}(A_0) \xrightarrow{\ \ \, } \pi_1^{\operatorname{Isoc}^\dagger}(A_0 \times A_0) \xrightarrow{\ \ \, } \pi_1^{\operatorname{Isoc}^\dagger}(A_0).$$

It endows  $\pi_1^{\mathrm{Isoc}^\dagger}(A_0)$  with a second group structure compatible with the structural one. By an Eckmann–Hilton argument,  $\pi_1^{\mathrm{Isoc}^\dagger}(A_0)$  is commutative. Hence the same is true for its quotient G(M).

## The case of abelian varieties

## Theorem (MD'A)

Let  $A_0$  be an abelian variety over  $\mathbb{F}_q$  and M be a semi-simple overconvergent isocrystal such that  $F_{A_0}^*M\simeq M$ . Then there exists a finite étale cover  $f_0:Y_0\to A_0$  such that  $f_0^*M$  is trivial on  $Y_0$ .

### Proof of the theorem

- 1 M semi-simple  $\Rightarrow G(M)$  is a reductive group.
- 2 Previous lemma +  $(1) \Rightarrow G(M) \simeq \text{torus} \times \text{commutative finite group.}$ In particular, the radical of G(M) is  $G(M)^{\circ}$ .
- 3 Global monodromy theorem  $\Rightarrow G(M)^{\circ}$  is unipotent, hence trivial. Thus G(M) is finite.

## Theorem (MD'A)

Let  $A_0$  be an abelian variety over  $\mathbb{F}_q$  and M be a semi-simple overconvergent isocrystal such that  $F_{A_0}^*M\simeq M$ . Then there exists a finite étale cover  $f_0:Y_0\to A_0$  such that  $f_0^*M$  is trivial on  $Y_0$ .

#### Proof of the theorem.

- 4 An overconvergent isocrystal with finite monodromy admits a unit-root Frobenius structure. We denote by  $\Phi$  one of these Frobenius structures of M.
- 5  $\rho_{(M,\Phi)}(\pi_1^{\mathrm{\acute{e}t}}(A_0\otimes\overline{\mathbb{F}}_q))$  is finite, thus there exits  $f_0:Y_0\to A_0$  finite étale such that  $\rho_{(M,\Phi)}(\pi_1^{\mathrm{\acute{e}t}}(Y_0\otimes\overline{\mathbb{F}}_q))=1$ . Hence  $f_0^*M$  is trivial.



### References

- R. Crew, *F*-isocrystals and their monodromy groups, *Ann. Sci. École Norm. Sup.* **25** (1992), 429–464.
- MD'A, The monodromy groups of lisse sheaves and overconvergent *F*-isocrystals, arXiv:1711.06669 (2017).
- P. Deligne, J. S. Milne, Tannakian Categories, Lecture Notes in Math.
   900 (1982), Springer-Verlag, Berlin, Heidelberg, 101–228.
- K. S. Kedlaya, Notes on isocrystals, arXiv:1606.01321 (2016).
- N. Tsuzuki, Morphisms of F-isocrystals and the finite monodromy theorem for unit-root F-isocrystals, Duke Math. J. 111 (2002), 385–418.

