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Notation

Today F' will be a number field, Q? " the set of finite places and °3 an element of Q{f ". We will consider,
as usual, a morphism f : A% — AL and we will study Xy := f~1(0). We denote by | Xy| the set of
closed points of X. We will suppose fixed a log-resolution & : (Y, E) — (A%, Xp).

We recall the notation we are using in our seminar:

— E = ;¢ Ei, with each E; irreducible;

N; is the multiplicity of f o h along F;

v; — 1 is the multiplicity of Jacy, the jacobian ideal of h, along E;;

Ict, == min{v;/N; | x € h(E;)} and lct := min,¢| x,| lcts;

Forevery ) # J C I, we have E; := (¢, E} andEOJ:EJ\Uj¢JEj.

1 Analytic results

1.1 Bernstein polynomials

We start recalling the definition of the analytic zeta function attached to f. For every ¢ € C§°(C4, R)
we consider

Zr(s) = | |f(2)*¢(2)d=dz
Cd
defined for every s € C such that Rs > 0.

Theorem 1.1 (Bernstein). Z@O(s) admits a meromorphic continuition to C. The poles are negative
rational numbers.

We will see how this zeta function encodes informations of the singularities of X. Before doing
this we present an important tool for the study of this function, which is used, for example, to prove the
previous theorem.

Let O := Clz1,...,2,). For f € O, we consider Os, f~!]f*, arank 1 free O[s, f ~!]-module with
signpost f*. Let D := C|z1,...,2n,0z,...,0,,| and D[s] the ring of polynomials in the variable s
with coefficients in D. We put a D[s]-action on O[s, f 1] f* by setting 9., (gf*) := (9,9 + gsa%f)fs
for every g € O[s, f~!]. We denote by D[s]f* the sub-D[s]-module generated by f* and D[s]f**! the
one generated by f f°.



Definition 1.2 (Bernstein polynomial). We define bf(s) as the minimal polynomial of the endomor-
phism of the D[s]-module D[s]f*/D][s]f*! given by the multiplication by s on the left. Equivalently
b¢(s) is the monic polynomial of minimal degree, such that there exists a differential operator P € D[s],
satisfying by (s) f* = P fT1. We call such a polynomial, the Bernstein polynomial of f.

Theorem 1.3 (Bernstein). Every f € O admits a Bernstein polynomial by (s).

You can verifying by setting s = —1 that bs(—1) = 0. In general, Kashiwara has proven that all the
roots of by(s) are rational numbers.

Example 14. If f = z{vl zéVQ, with N1, N2 € N it is easy to show that

2 N;—1 j
b = - =
£(s) H H <s—|—1 Né)
i=1 7=0
and it satisfies the differential equation

1 N1 9N ps+1
bp(s)f* = W@f@ff :
Remark 1.5. The computation of Bernstein polynomials in general is instead very difficult. Toshinori
Oaku found an algorithm [ ] which computes bs(s) for every f using an analogue of Grobner
basis for differential operators.

The relation between Bernstein polynomials and the analytic zeta function is explained in the fol-
lowing result.

Proposition 1.6. For every 1 € C°(C™,R) and m € N, if s¢ is a pole onff(s) with Re(sg) > —m,
then sy + j is a root of by (s) for some integer 0 < j < m.

Proof. The proof proceed by induction on m. If m = 0 it holds emptily because the analytic zeta
function has no poles in the half-plane Re(s) > 0.

For the inductive step we use the Berstein polynomial of f. We know here exists P € D[s]| such
that

by(s)f* = Pfr.
Applying the conjugation we also get

Hence
b EZE) = by [ 1FGIP0) dedz = [ PP (7)) (o) dadz,

Thanks to the partial integration formula ! the RHS is equal to Z;;OF ) (s), thus the partial differential

equation defining b (s) translates to

b(8)2Z3°(5) = Zppy (5 + 1).

(¢)(
If 5o is a pole of Z°(s) which is not a root of b(s), then so + 1 is a pole of Z;Oﬁ(w)(s). Hence we
can use the inductive hypothesis on Z]OD% ) (s) getting the final result. O
! Here we are strongly using the fact we are working with analytic zeta functions. Indeed this formula has no analogue for
B-adic and motivic zeta functions.
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Proposition 1.7. lct, = sup{s| |f integrable around x}

Proof. Exercise: Take a log-resolution h : (Y, E) — (A%, X;), then use the change of variables for-
mula. -

Corollary 1.8. For every x € Xy, — Ict; is a zero of by.

Proof. Exercise: The reasoning is analogue to the proof of Proposition 1.6. 0

1.2 Monodromy

Milnor showed that if f : C? — C is an algebraic morphism then for every 2 € C¢ such that f(z) = 0,
there exists a ball B C C? centered at = and a punctured ball A C C \ {0} centered at 0 such that
A C f(B) and f|p is a locally trivial C*°-fibration over A with fiber F, := f~1(t) N B where t is a
certain point in A. If we choose a generator of the topological fundamental group of A, it induces an
endomorphism 77, on @?io i g(Fw, Z). The eigenvalues of T}, are called the monodromy eigenvalues
at z.

Theorem 1.9 (Malgrange [ ], Barlet [ ). For every o € R, the class [o] € R/Z is repre-
sented by a root of the Bernstein polynomial if and only if exp(2mi«) is a monodromy eigenvalue for a
certain x € X.

Hence as a consequence we obtain the main result of this section.
Theorem 1.10. Iffor some i) € C2°(C™,R), a complex number s is a pole of Z7(so), then exp(2miso)
is a monodromy eigenvalue for some r € Xy.
2 ‘B-dic monodromy conjecture

We now switch to the J3-adic zeta function defined in Tanya’s talk. For simplicity we will only work

with
Z¥(s) = / | fl5pda.
Op

We have seen the following theorem due to Igusa.

Theorem 2.1 (Igusa). Z¥(s) is rational in the variable t = q~*. If s is a pole of Z¥(s), then

for some i € I.

In general it is not the case that for every i € I there exists a pole of Z¥ (s) with real part equal to
—v;/N;. Some numerical computations suggest a behavior of the poles of Z% () as the one in Theorem
1.10.

Conjecture 2.2 (*3-adic monodromy conjecture). For almost every 3 € Qfm it s0 is a pole of Z¥(s),
then exp(2miRe(sg)) is a monodromy eigenvalue for some x.



Let’s try to understand how to attack this conjecture. We define the monodromy zeta function at
as

2d
Colt) == [ det(1 — T3 H, o (Fo, 2)) D"
n=0

There is an explicit formula of this function using the log-resoultion of (A%, Xj).

Theorem 2.3 (A’ Campo’s formula [ D.

) = [ (1 = ¥ xestBirn o)
icl

It may happen that a monodromy eigenvalue at x is not a zero or a pole of (,(t), because of some
unlucky cancellation. Nevertheless, Denef [ ] has proven, thanks to the perversity of the nearby
cycles complex, that every eigenvalue of the monodromy operator at z is a zero or a pole of (,(t) for
some point y, maybe different from x.

Denef has also proven that the J3-adic zeta function admits an explicit formula using the log-
resolution of (A%g Xp). Take a model ) of the log-resolution Y and for every ) # J C I, let &;
be the closure of £ 7 in 9). Denote by kg the residue field at 3.

Theorem 2.4 (Denef’s formula). For almost every ‘33,

—Njs—v;

ZH(s)=q* > | NS 11 (ql__ q)quSVj

0#£JCI jed

where q is the cardinality of ky and |Q?3(kqg)| is the cardinality of the ks-points of 603.
Proof. | , Theorem 3.1] ]

We have now explicit formulas for the monodromy eigenvalues and for the poles of the J3-adic
zeta function. The main difficulty from here to prove the monodromy conjecture is to understand the
configuration of the irreducible components F; in Y.

The conjecture is known in the following cases:

-n=2;
— n=3and f homogeneous ;
— some nice classes of singularities.

For references and some other facts about the *J3-adic monodromy conjecture you can look at [ ,
Section 3].

3 Motivic zeta function

We have defined in the previous talk the naive motivic zeta function.

o0

Zroie()im [ Lo = 3L, o) € M L)
£(Xo)

n=1



where X,, := £,(Xo) Nord; ' (n). We will be interested in the study of Z7%¢(s) := Z"%(s) x x,
x € M,[[L~?]] where the fiber product is done on the coefficients of the series. We also consider the
topological zeta function ZyP(s) = Xtop(Z7%¢(s)), defined taking the Euler characteristic of the
coefficients. We have seen the following formula without a proof.

Theorem 3.1 (Denef-Loeser’s formula).

“Nis—us
Znaive(g) — " Z (L — D)VI[E; ) Xo] H LT
1 _L—st—llj

0£JCI jeJ

Sketch of the proof. One can reduce to the case when X is an snc divisor, taking a log-resolution and
using the change of variables formula. Then the computation becomes easier thanks to the local de-
scription of the divisor E as the zero locus of monomials. If you want to see how to do concretely this
last computation I added in the Appendix A an example. 0

As a consequence we also have a formula for the topological zeta function:

top
Zi7(s) = > Xtp(Eyxx, @ H NHVJ (3.1.1)
0£JCI

We finally have all the tools to prove Veys’ conjecture.
Theorem 3.2 (Veys’ conjecture). If sg is a pole of order d of ZL(s) then sy = — Ict,.

Proof. 1f for some J, E ; # () then, by a dimension reasoning on E, using that F is an snc divisor,
the cardinality of .J is at most d. Hence, by the Formula (3.1.1), if s is a pole of order d, there exists
Jo C I such that |Jy| = d, EOJO N h=Y(x) # 0 and for every j € Jo, —v;/N; = so. In particular, Jj is
maximal with this property. Therefore we can apply the Main Theorem of Michael’s talk. Namely, by
the maximality of .Jy, v;/N; = lct,, for every j € Jy. This proves the theorem. O

We can ask for the motivic zeta function an analogous of the *J3-adic monodromy conjecture. In this
case, to talk about the poles of the function is more delicate because M x,, is not a domain (see [ D.

Conjecture 3.3 (Motivic monodromy conjecture). There exists a finite subset S C Z~g X Zs¢ such

that
1

7" (5) € M, [L_Sa T [ as®

] C My, [[L~)
(a.b)

and such that (a, b) € S implies exp(—27ib/a) is a monodromy eigenvalue for some z € Xj.

Specialisation to B3-adic world
Take the ring
’kqg ’ —as—b

=0 L = |kp[mos?

:| (a,b)€Z>0XZ>0

where |kgyp| is the cardinality of the residue field at . We denote by 2 the quotient of Hm colin Zp by
E

the ideal @‘ﬁ calin Zy. We define a morphism of rings

L—as—b

_ ]L—as—b:| - Z
(avb)€Z>0 ><Z>0

N Mx, [1



in the following way: for every variety 7' we take a model T over O and we send the class [T/ Xy] €
My, to the class [("Z(kqg)‘)m co gm] where |T(kq)| is the number of ky-points of the model T. The
morphism .4 is a well defined morphism of rings because two models of 7" are isomorphic for almost
every ‘3. Putting together Denef and Loeser’s formulas for 3-adic and motivic zeta function we obtain
the following.

Theorem 3.4 (Denef-Loeser).

A (@) = (229 |

As a consequence of this, the motivic monodromy conjecture implies the J3-adic monodromy con-
jecture for almost every 3.

A An example

We want to compute the naive motivic zeta function

Znaive(s) — Z L—ns—d(n+1) [xn/XO]

n=1

when f = leyNQ. We can decompose X as a disjoint union Eo'l I_IE02|_|];712 with Eol ={zx =0,y # 0},
by = {z #0,y =0} and Eyy = {r =0,y =0}.

To compute the motivic zeta function we need to understand [X,, / X¢] for every n. We recall that X,,
is the subscheme of £,,(A?) with C-points the n-jets with order n. The C-points of £,,(A%) corresponds
to Homping(Clz,y], C[t]/t"T1), hence they are determined by the images of z and y, namely a pair
(ap+art+---+ant" bo+bit+---+byt™) with a; and b; complex numbers. The order with respect to
t of a certain 7, € Hompging(Clz,y], C[t]/t"T1) is given by vy (v, (zV1y™?)), where vy is the standard
valuation on (C[ ]/t with vy (¢ ) 1. The previous decomposition translates in a decomposition
I)Cn—ElnI_IEQnI_IE;[QnWhereEJn::( ) (EJ)HDC

Let’s study one piece at a time. The variety 81 n 1s a locally trivial fibration of E1 We want to
understand the fiber. We fix a point (ag, bo) € El, hence @g = 0 and by # 0. The points v, =
(@ + art + -+ + ant™, by + bit + --- + b,t™) over (ap, by) are precisely given by the condition
V(Y (zN1yN?2)) = n. The element -y, (y) is invertible as by # 0, thus vy (7, (x)) N1 = n. In particular
Ni|n and if we denote a; := n/Nij,thena; = -+ = aq,—1 = 0, aq, # 0. There are no conditions on
the other b;, hence élm isa (G, x A" x A™)-bundle over Eol when Np|n and it’s empty if Ny { n.

Thus if Ni|n, [€1.,/Xo] = (L — 1)L2"—*1[E} /X,] and

Z L~ nS]L TL+1)[ /XO Z ]L—TLSL—Q(TH-I) (L _ 1)L2n—a1 [EOVI/XO] —
Ni|n

=L7(L - 1)[E1/Xo] Y LNl =
a1=1

L_le_l

— -2 — ; T T _Nis—1

The same reasoning applies to Es.



The case cg,lgm is slightly different. The scheme l%lz,n consists only of one point (0,0). The n-jets
Yo = (a1t + -+ + apt™, bit + - - - + b,t™) over (0,0) with order n are again given by the condition
Y (2NyN2) = n, thus we have vi(v,(2)) N1 + v¢(vn(y))No = n. For every choice of (ay,as) €
Zso % Lo such that oy N1 + aaNy = n, the n-jets with vi(y,(2)) = aq and v (1, (y)) = a2 give
a variety isomorphic to (G2, x A"~ x A"~2) over 1%12. In other words, if ay Ny + aa Ny = n,
[(%127”/X0] = (IL — 1)2L2n—a1—a2 [EO112/X0] and

Z L7~ 2(n+1) 812 n/XO Z Z L—nsL—Q(n-i-l)(L - 1)2L2n—a1—o¢2 [E?12/X0] _

n=1 a1,02€Z%0
a1N1+a2N2 n

= L2l - 1)%[En/Xe) Y, LeMshpeahet) o
a1,a2€7Z>0

B o L—le—l L—Ngs—l
= L7%(L — 1)?[E12/X0]

1— Llesfl 1— Lngsfl :

Now you can put the three pieces together and compare the result with Theorem 3.1. Recall that in our
case v; = 1.
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