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Notation

Today F will be a number field, Ωfin
F the set of finite places and P an element of Ωfin

F . We will consider,
as usual, a morphism f : AdF → A1

F and we will study X0 := f−1(0). We denote by |X0| the set of
closed points of X0. We will suppose fixed a log-resolution h : (Y,E)→ (AdF , X0).

We recall the notation we are using in our seminar:

– E =
⋃
i∈I Ei, with each Ei irreducible;

– Ni is the multiplicity of f ◦ h along Ei;

– νi − 1 is the multiplicity of Jach, the jacobian ideal of h, along Ei;

– lctx := min{νi/Ni | x ∈ h(Ei)} and lct := minx∈|X0| lctx;

– For every ∅ 6= J ⊆ I , we have EJ :=
⋂
j∈J Ej and

◦
EJ = EJ \

⋃
j /∈J Ej .

1 Analytic results

1.1 Bernstein polynomials

We start recalling the definition of the analytic zeta function attached to f . For every ψ ∈ C∞0 (Cd,R)
we consider

Z∞ψ (s) :=

∫
Cd

|f(z)|2sψ(z)dzdz

defined for every s ∈ C such that <s > 0.

Theorem 1.1 (Bernstein). Z∞ψ (s) admits a meromorphic continuition to C. The poles are negative
rational numbers.

We will see how this zeta function encodes informations of the singularities of X0. Before doing
this we present an important tool for the study of this function, which is used, for example, to prove the
previous theorem.

Let O := C[z1, . . . , zn]. For f ∈ O, we consider O[s, f−1]fs, a rank 1 free O[s, f−1]-module with
signpost fs. Let D := C[z1, . . . , zn, ∂z1 , . . . , ∂zn ] and D[s] the ring of polynomials in the variable s
with coefficients in D. We put a D[s]-action on O[s, f−1]fs by setting ∂zi(gf

s) := (∂zig + g
s∂zif

f )fs

for every g ∈ O[s, f−1]. We denote by D[s]fs the sub-D[s]-module generated by f s and D[s]fs+1 the
one generated by ffs.

1



Definition 1.2 (Bernstein polynomial). We define bf (s) as the minimal polynomial of the endomor-
phism of the D[s]-module D[s]f s/D[s]f s+1 given by the multiplication by s on the left. Equivalently
bf (s) is the monic polynomial of minimal degree, such that there exists a differential operator P ∈ D[s],
satisfying bf (s)fs = Pfs+1. We call such a polynomial, the Bernstein polynomial of f .

Theorem 1.3 (Bernstein). Every f ∈ O admits a Bernstein polynomial bf (s).

You can verifying by setting s = −1 that bf (−1) = 0. In general, Kashiwara has proven that all the
roots of bf (s) are rational numbers.

Example 1.4. If f = zN1
1 zN2

2 , with N1, N2 ∈ N it is easy to show that

bf (s) =
2∏
i=1

Ni−1∏
j=0

(
s+ 1− j

Ni

)
and it satisfies the differential equation

bf (s)fs =
1

NN1
1 NN2

2

∂N1
z1 ∂

N2
z2 f

s+1.

Remark 1.5. The computation of Bernstein polynomials in general is instead very difficult. Toshinori
Oaku found an algorithm [Oak97] which computes bf (s) for every f using an analogue of Grobner
basis for differential operators.

The relation between Bernstein polynomials and the analytic zeta function is explained in the fol-
lowing result.

Proposition 1.6. For every ψ ∈ C∞c (Cn,R) and m ∈ N, if s0 is a pole of Z∞ψ (s) with Re(s0) ≥ −m,
then s0 + j is a root of bf (s) for some integer 0 ≤ j ≤ m.

Proof. The proof proceed by induction on m. If m = 0 it holds emptily because the analytic zeta
function has no poles in the half-plane Re(s) ≥ 0.

For the inductive step we use the Berstein polynomial of f . We know here exists P ∈ D[s] such
that

bf (s)fs = Pfs+1.

Applying the conjugation we also get

bf (s)f
s

= Pf
s+1

.

Hence

|bf (s)|2Z∞ψ (s) = |bf (s)|2
∫
Cn

|f(z)|2sψ(z) dzdz =

∫
Cn

PP
(
|f(z)|2(s+1)

)
ψ(z) dzdz.

Thanks to the partial integration formula 1 the RHS is equal to Z∞
PP (ψ)

(s), thus the partial differential
equation defining bf (s) translates to

|bf (s)|2Z∞ψ (s) = Z∞
PP (ψ)

(s+ 1).

If s0 is a pole of Z∞ψ (s) which is not a root of bf (s), then s0 + 1 is a pole of Z∞
PP (ψ)

(s). Hence we
can use the inductive hypothesis on Z∞

PP (ψ)
(s) getting the final result.

1 Here we are strongly using the fact we are working with analytic zeta functions. Indeed this formula has no analogue for
P-adic and motivic zeta functions.
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Proposition 1.7. lctx = sup{s| |f |−2s integrable around x}

Proof. Exercise: Take a log-resolution h : (Y,E) → (Ad, X0), then use the change of variables for-
mula.

Corollary 1.8. For every x ∈ X0, − lctx is a zero of bf .

Proof. Exercise: The reasoning is analogue to the proof of Proposition 1.6.

1.2 Monodromy

Milnor showed that if f : Cd → C is an algebraic morphism then for every x ∈ Cd such that f(x) = 0,
there exists a ball B ⊆ Cd centered at x and a punctured ball A ⊆ C \ {0} centered at 0 such that
A ⊆ f(B) and f |B is a locally trivial C∞-fibration over A with fiber Fx := f−1(t) ∩ B where t is a
certain point in A. If we choose a generator of the topological fundamental group of A, it induces an
endomorphism Tx on

⊕2d
i=0H

i
sing(Fx,Z). The eigenvalues of Tx are called the monodromy eigenvalues

at x.

Theorem 1.9 (Malgrange [Mal83], Barlet [Bar84]). For every α ∈ R, the class [α] ∈ R/Z is repre-
sented by a root of the Bernstein polynomial if and only if exp(2πiα) is a monodromy eigenvalue for a
certain x ∈ X0.

Hence as a consequence we obtain the main result of this section.

Theorem 1.10. If for someψ ∈ C∞c (Cn,R), a complex number s0 is a pole ofZ∞ψ (s0), then exp(2πis0)
is a monodromy eigenvalue for some x ∈ X0.

2 P-dic monodromy conjecture

We now switch to the P-adic zeta function defined in Tanya’s talk. For simplicity we will only work
with

ZP(s) :=

∫
OP

|f |sPdx.

We have seen the following theorem due to Igusa.

Theorem 2.1 (Igusa). ZP(s) is rational in the variable t = q−s. If s0 is a pole of ZP(s), then

s0 ∈ −
νi
Ni

+
2πi

ln q
Z

for some i ∈ I .

In general it is not the case that for every i ∈ I there exists a pole of ZP(s) with real part equal to
−νi/Ni. Some numerical computations suggest a behavior of the poles of ZP(s) as the one in Theorem
1.10.

Conjecture 2.2 (P-adic monodromy conjecture). For almost every P ∈ Ωfin
F , if s0 is a pole of ZP(s),

then exp(2πiRe(s0)) is a monodromy eigenvalue for some x.
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Let’s try to understand how to attack this conjecture. We define the monodromy zeta function at x
as

ζx(t) :=
2d∏
n=0

det(1− tTx|Hn
sing(Fx,Z))(−1)n+1

.

There is an explicit formula of this function using the log-resoultion of (Ad, X0).

Theorem 2.3 (A’ Campo’s formula [A’C75]).

ζx(t) =
∏
i∈I

(1− tNi)−χtop(
◦
Ei∩h−1(x))

It may happen that a monodromy eigenvalue at x is not a zero or a pole of ζx(t), because of some
unlucky cancellation. Nevertheless, Denef [Den93] has proven, thanks to the perversity of the nearby
cycles complex, that every eigenvalue of the monodromy operator at x is a zero or a pole of ζy(t) for
some point y, maybe different from x.

Denef has also proven that the P-adic zeta function admits an explicit formula using the log-
resolution of (AdF , X0). Take a model Y of the log-resolution Y and for every ∅ 6= J ⊆ I , let

◦
EJ

be the closure of
◦
EJ in Y. Denote by kP the residue field at P.

Theorem 2.4 (Denef’s formula). For almost every P,

ZP(s) = q−d
∑
∅6=J⊆I

|
◦
EJ(kP)|

∏
j∈J

(q − 1)q−Njs−νj

1− q−Njs−νj

where q is the cardinality of kP and |
◦
EJ(kP)| is the cardinality of the kP-points of

◦
EJ.

Proof. [Den87, Theorem 3.1]

We have now explicit formulas for the monodromy eigenvalues and for the poles of the P-adic
zeta function. The main difficulty from here to prove the monodromy conjecture is to understand the
configuration of the irreducible components Ei in Y .

The conjecture is known in the following cases:

– n = 2 ;

– n = 3 and f homogeneous ;

– some nice classes of singularities.

For references and some other facts about the P-adic monodromy conjecture you can look at [Nic09,
Section 3].

3 Motivic zeta function

We have defined in the previous talk the naive motivic zeta function.

Znaive(s) :=

∫
L(X0)

L−ordt(f)sdµ =

∞∑
n=1

L−ns−d(n+1)[Xn/X0] ∈MX0 [[L−s]]
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where Xn := Ln(X0) ∩ ord−1
t (n). We will be interested in the study of Znaivex (s) := Znaive(s) ×X0

x ∈ Mx[[L−s]] where the fiber product is done on the coefficients of the series. We also consider the
topological zeta function Ztopx (s) := χtop(Z

naive
x (s)), defined taking the Euler characteristic of the

coefficients. We have seen the following formula without a proof.

Theorem 3.1 (Denef-Loeser’s formula).

Znaive(s) = L−n
∑
∅6=J⊆I

(L− 1)|J |[
◦
EJ/X0]

∏
j∈J

L−Njs−νj

1− L−Njs−νj

Sketch of the proof. One can reduce to the case when X0 is an snc divisor, taking a log-resolution and
using the change of variables formula. Then the computation becomes easier thanks to the local de-
scription of the divisor E as the zero locus of monomials. If you want to see how to do concretely this
last computation I added in the Appendix A an example.

As a consequence we also have a formula for the topological zeta function:

Ztopx (s) =
∑
∅6=J⊆I

χtop(
◦
EJ ×X0 x)

∏
j∈J

1

Njs+ νj
. (3.1.1)

We finally have all the tools to prove Veys’ conjecture.

Theorem 3.2 (Veys’ conjecture). If s0 is a pole of order d of Ztopx (s) then s0 = − lctx.

Proof. If for some J ,
◦
EJ 6= ∅ then, by a dimension reasoning on EJ , using that E is an snc divisor,

the cardinality of J is at most d. Hence, by the Formula (3.1.1), if s0 is a pole of order d, there exists
J0 ⊆ I such that |J0| = d,

◦
EJ0 ∩ h−1(x) 6= ∅ and for every j ∈ J0, −νj/Nj = s0. In particular, J0 is

maximal with this property. Therefore we can apply the Main Theorem of Michael’s talk. Namely, by
the maximality of J0, νj/Nj = lctx for every j ∈ J0. This proves the theorem.

We can ask for the motivic zeta function an analogous of the P-adic monodromy conjecture. In this
case, to talk about the poles of the function is more delicate because MX0 is not a domain (see [Poo02]).

Conjecture 3.3 (Motivic monodromy conjecture). There exists a finite subset S ⊆ Z>0 × Z>0 such
that

Znaive(s) ∈MX0

[
L−s,

1

1− L−as−b

]
(a,b)∈S

⊆MX0 [[L−s]]

and such that (a, b) ∈ S implies exp(−2πib/a) is a monodromy eigenvalue for some x ∈ X0.

Specialisation to P-adic world
Take the ring

ZP := Q
[
|kP|−as−b

1− |kP|−as−b

]
(a,b)∈Z>0×Z>0

where |kP| is the cardinality of the residue field at P. We denote by Z the quotient of
∏

P∈Ωfin
E

ZP by
the ideal

⊕
P∈Ωfin

E
ZP. We define a morphism of rings

N : MX0

[
L−as−b

1− L−as−b

]
(a,b)∈Z>0×Z>0

→ Z
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in the following way: for every variety T we take a model T over OF and we send the class [T/X0] ∈
MX0 to the class [(|T(kP)|)

P∈Ωfin
F

] where |T(kP)| is the number of kP-points of the model T. The
morphism N is a well defined morphism of rings because two models of T are isomorphic for almost
every P. Putting together Denef and Loeser’s formulas for P-adic and motivic zeta function we obtain
the following.

Theorem 3.4 (Denef-Loeser).

N (Znaive(s)) =

[(
ZP(s)

)
P∈Ωfin

F

]
.

As a consequence of this, the motivic monodromy conjecture implies the P-adic monodromy con-
jecture for almost every P.

A An example

We want to compute the naive motivic zeta function

Znaive(s) :=
∞∑
n=1

L−ns−d(n+1)[Xn/X0]

when f = xN1yN2 . We can decomposeX0 as a disjoint union
◦
E1t

◦
E2t

◦
E12 with

◦
E1 = {x = 0, y 6= 0},

◦
E2 = {x 6= 0, y = 0} and

◦
E12 = {x = 0, y = 0}.

To compute the motivic zeta function we need to understand [Xn/X0] for every n. We recall that Xn
is the subscheme of Ln(Ad) with C-points the n-jets with order n. The C-points of Ln(Ad) corresponds
to HomRing(C[x, y],C[t]/tn+1), hence they are determined by the images of x and y, namely a pair
(a0 +a1t+ · · ·+ant

n, b0 +b1t+ · · ·+bnt
n) with ai and bi complex numbers. The order with respect to

t of a certain γn ∈ HomRing(C[x, y],C[t]/tn+1) is given by vt(γn(xN1yN2)), where vt is the standard
valuation on C[t]/tn+1 with vt(t) = 1. The previous decomposition translates in a decomposition
Xn =

◦
E1,n t

◦
E2,n t

◦
E12,n where

◦
EJ,n := (πn0 )−1(EJ) ∩ Xn.

Let’s study one piece at a time. The variety
◦
E1,n is a locally trivial fibration of

◦
E1. We want to

understand the fiber. We fix a point (a0, b0) ∈
◦
E1, hence a0 = 0 and b0 6= 0. The points γn =

(a0 + a1t + · · · + ant
n, b0 + b1t + · · · + bnt

n) over (a0, b0) are precisely given by the condition
vt(γn(xN1yN2)) = n. The element γn(y) is invertible as b0 6= 0, thus vt(γn(x))N1 = n. In particular
N1|n and if we denote α1 := n/N1, then a1 = · · · = aα1−1 = 0, aα1 6= 0. There are no conditions on
the other bi, hence

◦
E1,n is a (Gm × An−α1 × An)-bundle over

◦
E1 when N1|n and it’s empty if N1 - n.

Thus if N1|n, [
◦
E1,n/X0] = (L− 1)L2n−α1 [

◦
E1/X0] and

∞∑
n=1

L−nsL−2(n+1)[
◦
E1,n/X0] =

∑
N1|n

L−nsL−2(n+1)(L− 1)L2n−α1 [
◦
E1/X0] =

= L−2(L− 1)[
◦
E1/X0]

∞∑
α1=1

Lα1(−N1s−1) =

= L−2(L− 1)[
◦
E1/X0]

L−N1s−1

1− L−N1s−1
.

The same reasoning applies to
◦
E2.
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The case
◦
E12,n is slightly different. The scheme

◦
E12,n consists only of one point (0, 0). The n-jets

γn = (a1t + · · · + ant
n, b1t + · · · + bnt

n) over (0, 0) with order n are again given by the condition
γn(xN1yN2) = n, thus we have vt(γn(x))N1 + vt(γn(y))N2 = n. For every choice of (α1, α2) ∈
Z>0 × Z>0 such that α1N1 + α2N2 = n, the n-jets with vt(γn(x)) = α1 and vt(γn(y)) = α2 give
a variety isomorphic to (G2

m × An−α1 × An−α2) over
◦
E12. In other words, if α1N1 + α2N2 = n,

[
◦
E12,n/X0] = (L− 1)2L2n−α1−α2 [

◦
E12/X0] and

∞∑
n=1

L−nsL−2(n+1)[
◦
E12,n/X0] =

∞∑
n=1

∑
α1,α2∈Z>0

α1N1+α2N2=n

L−nsL−2(n+1)(L− 1)2L2n−α1−α2 [
◦
E12/X0] =

= L−2(L− 1)2[
◦
E12/X0]

∑
α1,α2∈Z>0

Lα1(−N1s−1)Lα2(−N1s−1) =

= L−2(L− 1)2[
◦
E12/X0]

L−N1s−1

1− L−N1s−1

L−N2s−1

1− L−N2s−1
.

Now you can put the three pieces together and compare the result with Theorem 3.1. Recall that in our
case νi = 1.
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