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1. INTRODUCTION

Dans cette these, nous explorons les avancées récentes dans 1’étude de la filtration par les pentes
des F'-isocristaux, en nous concentrant particulierement sur la conjecture de parabolicité et son
amélioration locale. Ces résultats constituent un nouveau lien entre les motifs et la géométrie p-
adique. Nous appliquons spécifiquement ces outils pour étudier la géométrie des variétés de Shimura
en caractéristique positive.

1.1. Faisceaux lisses et F-isocristaux. Soient p et ¢ deux nombres premiers distincts. Une
grande partie de la géométrie arithmétique en caractéristique p repose sur la cohomologie étale
L-adique, ou les faisceaux lisses jouent un role central. Cette théorie a été essentielle pour prouver
des résultats majeurs, comme ’hypothese de Riemann sur les corps finis. La variante p-adique des
faisceaux lisses est la catégorie des F'-isocristaux.

Contrairement aux faisceaux lisses f-adiques, les F-isocristaux se présentent sous différentes formes,
dont les deux principales catégories sont les F-isocristaux “classiques” de Grothendieck et les F'-
isocristaux surconvergents de Berthelot (voir §2 ou [Ked22] pour un apergu). Ces derniers se sont
avérés étre I'analogue “correct” des systeémes locaux f-adiques. Les F-isocristaux surconvergents
possedent des groupes de cohomologie de dimension finie, une théorie des poids [Ked06b], et ils
satisfont une correspondance de Langlands [Abel8]. En combinant la correspondance d’Abe avec la
correspondance de Langlands classique pour GL, sur un corps de fonctions, prouvée par Drinfeld et
L. Lafforgue, on obtient, sur les courbes lisses sur un corps fini, une correspondance entre les fais-
ceaux lisses f-adiques semi-simples et les F-isocristaux surconvergents semi-simples. L’assignation
préserve les traces du Frobenius aux points fermés. Deux objets ainsi reliés sont appelés compagnons
(voir [D’Ad20] pour plus de détails).

Les F-isocristaux de Grothendieck présentent des comportements sensiblement différents. Soit X
une variété lisse sur un corps parfait k de caractéristique p. Comme démontré par Kedlaya dans
[Ked04b], la catégorie des F-isocristaux surconvergents sur X admet un foncteur pleinement fidele

a: F-Isoc! (X) — F-Isoc(X).

Nous disons que (M, P ) € F-Isoc(X) est T-prolongeable s’il est dans I'image essentielle de « et
nous écrivons (M, ® 1) pour le F-isocristal surconvergent associé. Pour (M, ® 1) € F-Tsoc (X),
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I'image dans F-Isoc(X) acquiert en général plus de sous-quotients. Par exemple, si (M, Prq) a des
pentes constantes, il admet une (unique) filtration dans F-Isoc(X)

0=S5y(M) C S1(M) S -+ C Sp(M) =M,

ou, pour chaque ¢ > 0, le quotient S;(M)/S;_1(M) est de pente ¢; € Q et la suite {¢ }1<i<m
est croissante. Cette filtration est appelée filtration par les pentes (voir §3, [And09]). En général,
cette filtration ne se scinde pas et les sous-objets ne sont pas f-prolongeables. Dans les situations
géométriques, le premier niveau de la filtration correspond a la cohomologie étale p-adique, qui
constitue seulement une partie de la cohomologie cristalline et rigide.

1.2. La conjecture de parabolicité de Crew. Les catégories présentées ci-dessus sont tan-
nakiennes, donc équivalentes (éventuellement apres extension du corps de base) a la catégorie des
représentations linéaires d’un groupe pro-algébrique. L’image de la représentation associée a un
objet est ce que l'on appelle le groupe de monodromie (algébrique) de 1'objet. Dans le cas des
systemes locaux f-adiques, les groupes de monodromie ont déja été largement étudiés. Pour les
catégories des F-isocristaux, beaucoup moins de choses étaient connues. Dans le cas f-prolongeable,
une caractéristique intéressante est I'interaction entre le groupe de monodromie comme F-isocristal
et F-isocristal surconvergent. Ce phénomene n’a pas d’analogue f-adique.

Soit (M, ® ) un F-isocristal {-prolongeable sur X qui admet la filtration par les pentes. Notons
G(M) et G(MT) les groupes de monodromie associés. Dans [D’Ad23], nous avons prouvé le résultat
suivant (voir §4).

Theorem 1.2.1 (Conjecture de parabolicité de Crew, Théoreme 4.1.1). Le groupe G(M) est le
sous-groupe de G(MT) qui stabilise la filtration par les pentes. De plus, lorsque M7 est semi-simple,
G(M) est un sous-groupe parabolique de G(MT).

En combinant ce théoreme avec le résultat principal de [D’Ad20], on peut calculer le groupe G(M)
dans de nombreuses situations géométriques. Comme nous le verrons dans ce texte, les applications
les plus intéressantes obtenues jusqu’a présent sont celles ou M est l'isocristal universel de la
réduction modulo p d’une variété de Shimura.

Dans [DvH22], nous avons prouvé une sorte d’amélioration du Théoréme 1.2.1, que nous présentons
en §5. Soit z un point fermé de X et soit X/* la complétion formelle de X en x. Nous écrivons
M/® pour la restriction de M & X/*.

Theorem 1.2.2 (D’A-van Hoften, Théoreme 5.4.4). Si (M, ®rq) provient d’un isocristal surcon-
vergent semi-simple muni d’une structure de Frobenius avec polygone de Newton constant, alors

G(M/®) = Ry(G(M)).

Notez que I’énoncé du Théoreme 5.4.4 est tres éloigné du comportement ¢-adique. En effet, le groupe
fondamental étale géométrique de X/% est trivial, ce qui implique que les faisceaux lisses f-adiques
sur X/ ont une monodromie géométrique triviale. Dans la §5.1, nous expliquerons pourquoi le
Théoreme 1.2.2 doit étre considéré comme une amélioration du Théoreme 1.2.1. En général, nous
nous attendons que la forme plus forte suivante du Théoreme 1.2.1 soit vraie.

Conjecture 1.2.3 (D’A-van Hoften). Si (M, ®aq) admet la filtration par les pentes, alors G(M/%)
est le noyau de G(M) - G(N), ou N est l'objet gradué associé a la filtration par les pentes.
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1.3. Conjecture d’orbite de Hecke. Comme application de la conjecture de parabolicité et du
Théoreme 1.2.2, nous avons résolu avec van Hoften une conjecture proposée par Chai et Oort sur
le comportement des orbites de Hecke des variétés de Shimura, [DvH22]. Rappelons la conjecture.

Soit p un nombre premier et g un entier positif. Le Probleme 15 de la liste de probléemes ouverts
de Oort en géométrie algébrique en 1995, [Oorl9], était la conjecture suivante.

Conjecture 1.3.1. Soit x = (A, \) un point F,, de l’espace de modules Ay des variétés abéliennes
principalement polarisées de dimension g sur F,. L’orbite de Hecke de x, constituée de tous les
points y € Ay(F,) paramétrant des variétés abéliennes principalement polarisées reliées o (Ay, )
par des isogénies symplectiques, est dense pour la topologie de Zariski dans le stratum de Newton

de Ay contenant x.

Il existe une version raffinée de la Conjecture 1.3.1, également due a Oort, qui considere 'orbite de
Hecke premier a p de z, constituée de tous les y € Ay (Fp) reliés a x par des isogénies symplectiques
premier a p. Dans ce cas, le groupe p-divisible quasi-polarisé (A, [p>°], \) est constant sur les orbites
de Hecke premier a p (non seulement constant a isogénie pres). Par conséquent, 1'orbite de Hecke
premier a p de x est contenue dans la feuille centrale

Clz) = {y € Ay(Fp) | Ay[p™] =x A:[p™]},
ou ~) désigne un isomorphisme symplectique. Oort a prouvé dans [Oor04] que C(z) est une sous-
variété fermée et lisse du stratum de Newton de A, contenant z. Il a également conjecturé que
Iorbite de Hecke premier & p de x était dense pour la topologie de Zariski dans la feuille centrale
C(x). Cette conjecture est connue sous le nom de conjecture d’orbite de Hecke pour A,. Grace a

la formule de produit de Mantovan—Oort, la conjecture d’orbite de Hecke implique la Conjecture
1.3.1.

Les feuilles centrales et les orbites de Hecke premier a p peuvent également étre définies pour les
fibres spéciales des variétés de Shimura de type Hodge en des premiers de bonne réduction grace
aux travaux de Hamacher et Kim. La conjecture d’orbite de Hecke pour les variétés de Shimura
de type Hodge prédit alors que les orbites de Hecke premier a p des points sont denses pour la
topologie de Zariski dans les feuilles centrales les contenant (voir [KS23, Ques. 8.2.1] et [Cha06b,
Conj. 3.2]). La conjecture d’orbite de Hecke se divise naturellement en une partie discréte et une
partie continue. La partie discrete affirme que 'orbite de Hecke premier a p de x intersecte chaque
composante connexe de C(x), tandis que la partie continue affirme que ’adhérence de Zariski de
Porbite de Hecke premier & p de x est de la méme dimension que C(x). La partie discrete de la
conjecture est le Théoreme C de [KS23] (voir [vHX21] pour des résultats connexes).

1.3.1.  Soit (G, X) un datum de Shimura de type Hodge avec le corps réflexe E, et supposons pour
simplifier que G?! est Q-simple. Soit p > 2 un nombre premier tel que G = G®Q), est quasi-déployé
et déployé sur une extension non ramifiée, soit U, C G(Q,) un sous-groupe hyperspécial, et soit
U?r C G(A?) un sous-groupe ouvert compact suffisamment petit. Choisissons une place v de E
divisant p et posons E = E,. Soit Shy(G,X) le modele canonique de variété de Shimura pour
(G,X) de niveau U := UPU) sur E. Soit #17(G, X) le modele intégral canonique sur O construit
dans [Kis17], et soit Shg  sa fibre spéciale géométrique. Soit C' C Shg 1y une feuille centrale telle
que construite dans [Ham19] (cf. [Kim19)).
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Theorem 1.3.2 ([DvH22|). Sip # 2 et Z C C est une sous-variété fermée réduite non vide qui
est stable sous les opérateurs de Hecke premier a p, alors Z = C.

Lorsque Shg iy est une variété modulaire de Siegel, ce résultat est dit a Chai-Oort et apparaitra
dans leur livre, [CO24]. Leurs preuves ne se généralisent pas aux variétés de Shimura plus générales,
car elles reposent sur 'existence de points hypersymétriques dans les strates de Newton, ce qui est
généralement faux pour les variétés de Shimura de type Hodge. De plus, leur preuve de la partie
continue de la conjecture repose sur le fait que tout point z € A, (Fp) est contenu dans une grande
variété modulaire de Hilbert, et ils utilisent les travaux de Chai—Oort—Yu sur la conjecture d’orbite
de Hecke pour les variétés modulaires de Hilbert en des premiers (éventuellement ramifiés). Il existe
de nombreux autres résultats partiels, par exemple pour les orbites de Hecke premier a p des points
hypersymétriques dans le cas PEL, [Xia20], ou pour les orbites de Hecke premier & p des points
p-ordinaires, [ChaO6a], [Shal6], [MST22], [Zho23], [vH24].

Nous avons également prouvé que les classes d’isogénie sont denses dans les strates de Newton qui
les contiennent, voir [DvH22, Thm. 8.4.1]. De plus, nous avons obtenu des résultats sur les orbites
de Hecke ¢-adiques pour les premiers ¢ # p généralisant les travaux de Chai, [Chall], dans le cas
de Siegel, voir [DvH22, Thm. 8.6.1].

Remark 1.3.3. L’hypothese selon laquelle G* est Q-simple peut étre assouplie au prix d’introduire
plus de notations, voir [DvH22, Thm. 8.3.2] pour un énoncé précis. L’hypothese p > 2 est héritée
des travaux de Kim [Kim19], et n’est pas nécessaire pour les variétés modulaires de Siegel.

Remark 1.3.4. Bragg—Yang ont prouvé un critére de bonne réduction potentielle pour les surfaces
K3, voir [BY23, Thm. 8.10], sous réserve de la conjecture d’orbite de Hecke pour certaines variétés
de Shimura orthogonales, voir [ibid., Conj. 8.2]. Dans [DvH22, §8.5], nous avons expliqué que nos
résultats peuvent étre utilisés pour prouver cette conjecture pour p > 2.

1.3.2. Pour résoudre la conjecture d’orbite de Hecke, nous avons principalement exploité une
stratégie proposée par Chai et Oort. Grace a [KS23], pour prouver la conjecture, il suffisait de
montrer que la dimension de Z est maximale. Ainsi, nous avons pu examiner le voisinage formel
Z/® par rapport & un certain point fermé lisse z € Z. Sur ce schéma formel, nous avons combiné
[vH24, Cor. 3.3.3] et le Théoreme 1.2.2 pour prouver que le groupe de monodromie de 'isocristal
universel F est maximal'. Pour en déduire qu’une grande monodromie garantit un grand voisinage
formel, nous avons combiné un résultat de rigidité de Chai—Oort sur les sous-schémas formels
fortement Tate-linéaires, [CO22], et une borne de monodromie obtenue en utilisant les champs de
Cartier—-Witt (Théoreme 6.5.1). Le Théoreme 6.5.1 est la “moitié” d’une conjecture que nous avons
formulée sur la détermination des groupes de monodromie pertinents (voir Conjecture 6.4.2).

1.4. Structure de la thése. Dans la §2, nous présentons de maniere historique les principales
théories de cohomologie p-adique en caractéristique positive. Dans la §3, nous rappelons d’abord
la notion de filtration par les pentes des F-isocristaux, puis nous examinons le comportement des
F-isocristaux sur les schémas Frobenius-lisses et expliquons la preuve d’un nouveau résultat de
pleine fidélité pour le foncteur de restriction au point générique (Théoreme 3.3.4). Nous 'utilisons

INotez que [vH24, Cor. 3.3.3] utilise indirectement la correspondance de Langlands en caractéristique positive car
il repose sur [D’Ad20].
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pour prouver un résultat général sur l'existence de la filtration par les pentes (Théoréme 3.3.6).
Ensuite, nous rappelons les définitions et théoremes principaux de la théorie des groupes p-divisibles.
Nous terminons la section en introduisant les anneauxr quasi-réguliers sémiparfaits et la notion de
groupes p-divisibles complétement divisibles par les pentes. Dans la §4, nous présentons la preuve
de la conjecture de parabolicité, dans la §5 son amélioration locale, et dans la §6 nous détaillons
comment ces résultats contribuent a résoudre la conjecture d’orbite de Hecke. Dans la §6.2, nous
rappelons la définition des algébres de Dieudonné—Lie que nous avons utilisées pour définir certaines
coordonnées de Serre-Tate généralisées. Dans la §7, nous passons en revue d’autres applications
de la conjecture de parabolicité. En particulier, dans la §7.3, nous présentons quelques variantes
p-adiques de la conjecture de Tate et sa relation avec la conjecture de parabolicité.

1.5. Remerciements. Je souhaite exprimer ma profonde gratitude & ma directrice de these Hélene
Esnault ainsi qu’a mes mentors Matthew Morrow et Peter Scholze, pour leur précieuse orientation
et leur soutien tout au long de mon parcours académique.

Je tiens également a remercier Lie Fu d’avoir accepté le role de garant pour cette these. Mes sinceres
remerciements vont a Yves André, Anna Cadoret, et Nobuo Tsuzuki pour avoir été rapporteurs de
cette thése et a Daniel Caro pour avoir été examinateur.

Je remercie chaleureusement Pol van Hoften pour la belle collaboration que nous avons partagée
dans la résolution de la conjecture d’orbite de Hecke. Travailler ensemble sur ce probleme complexe
a été une expérience intellectuellement stimulante et passionnante, et j’apprécie profondément notre
partenariat.

Je remercie également toutes les personnes de la communauté mathématique avec qui j’ai eu des
discussions éclairantes, telles que Tomoyuki Abe, Emiliano Ambrosi, Yves André, Bhargav Bhatt,
Anna Cadoret, Daniel Caro, Ching-Li Chai, Bruno Chiarellotto, Dustin Clausen, Richard Crew,
Elden Elmanto, Hélene Esnault, Ofer Gabber, Carlo Gasbarri, Luc Illusie, Bruno Kahn, Kiran
Kedlaya, Shane Kelly, Daniel Kriz, Christopher Lazda, Arthur-César Le Bras, Matthew Morrow,
Frans Oort, Mauro Porta, Damian Réssler, Peter Scholze, Atsushi Shiho, Matteo Tamiozzo, Nobuo
Tsuzuki, Olivier Wittenberg, et bien d’autres.

Je remercie I'Institut Max Planck (MPI), UInstitut de mathématiques de Jussieu — Paris Rive
Gauche (IMJ-PRG), et 'Institut de Recherche Mathématique Avancée (IRMA) pour leur chaleureux
accueil lors de mes séjours de recherche. Les environnements stimulants offerts par ces institutions
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Fondation Allemande pour la Recherche (DFG), la Commission Européenne, et le Centre National
de la Recherche Scientifique (CNRS). Votre soutien a été essentiel pour mener & bien mes recherches.

2. REVIEW OF p-ADIC COHOMOLOGY THEORIES

In this section we shall present an historical overview of various p-adic cohomology theories that
have been developed over time.
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2.1. Algebraic de Rham cohomology. Let us first recall the situation over the complex num-
bers. Let X be a smooth algebraic variety over C. One can construct on X a complex of sheaves
of algebraic differential forms

Yo =0- Oxe S0k e 5 0% S
The algebraic de Rham cohomology H 3 (X/C) is defined to be the hypercohomology of the complex
05 Jc s a complex of sheaves for the Zariski topology of X. If X is affine these groups coincide with
the cohomology groups of the complex of global sections of Q% /c Grothendieck proved that for
smooth varieties, de Rham cohomology computes the singular cohomology of the complex manifold
Xa" associated to X. For example, for the affine line A%: (corresponding to the complex manifold
C), we have that H}(X/C) = 0 since

Clz] ~ HY(X, Ox)c) & HY(X, Q% ¢) ~ Cla]dz
is surjective.

The construction of the groups H3y (X/C) is completely algebraic, thus one can define them for
every smooth algebraic variety over a field k£ (or more generally for smooth schemes over a base 5).
In characteristic 0, this construction works well and the cohomology groups have all the desired
properties. In particular, the cohomology groups are finite-dimensional k-vector spaces. In positive
characteristic one encounters some problems. If Alle is the affine line over I, the [F)-vector space

H cllR(AJ%‘p /F,) is infinite-dimensional. The differential forms 2P~'dx,2?P~1dz, ... define an infinite
sequence of linearly independent classes. Even for smooth and proper varieties there are some
undesired phenomena. For example, the dimension of H}(X/k) might be bigger than twice the
dimension of the Picard variety of X.

2.2. Dwork and Monsky—Washnitzer cohomology. A way to overcome the problems of al-
gebraic de Rham cohomology in positive characteristic is to work with lifting of the varieties to
characteristic 0. If k£ is a perfect field of positive characteristic p, a very convenient way to pass
to characteristic 0 is by considering the ring of Witt-vectors W. This ring is a p-adically complete
discrete valuation ring with residue field £ and fraction field K of characteristic 0. The construction
of this ring is functorial in k£ and it generalises the construction of the ring of p-adic integers 7Z,,
which is the ring of Witt-vectors of F,. Even if there are many different ways to lift the equations of
an algebraic variety over k to W, if X is the reduction modulo p of two different smooth and proper
schemes Xo and X/, over W, the de Rham cohomology groups Hlp(Xoo/W) and Hly (XL /W)
are canonically isomorphic. In this case, we also have that the W-module H}p (Xo /W) is finitely
generated.

Dwork was the first one to construct and use p-adic cohomology groups endowed with an action of
the Frobenius for some particular algebraic varieties over k. Many authors, influenced by Dwork’s
ideas, tried to construct an entire cohomology theory for algebraic varieties over perfect fields of
positive characteristic with coefficients in W. One of the first difficulties is that, in general, smooth
and proper varieties over k do not lift to smooth proper schemes over W. If X is smooth and
affine, instead, there is always a formal lift X := Spf(A) over Spf(W), where A is a p-adically
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complete topologically finitely generated and formally smooth W-algebra. Even for this lift one
has a natural de Rham complex

° . d 1 d 2 d
The As.-module of global sections F(QgE /W) is defined to be the projective limit m Qi‘n W where
Ay = A /p" and W, := W/p". One can prove that the cohomology of Q5 w depends only on X,
again, but in this case the cohomology groups are huge. This is already clear for the affine line. If
X := A}}, is the formal affine line over W, its ring of global sections mn Wy, |x] is isomorphic to the
ring

o)
W{(z) = {Z a;x’ € W(z]] | vp(a;) — oo when i — oo} .
i=0
Therefore, we get the complex
Wi(z) % W(z)da.

In this case, there are lots of undesirable classes. The first type is given by those classes represented
by the differential forms like 27~ 'dzx, which cannot be integrated because p is not invertible. These
differential forms can be integrated after multiplying enough times by p, thus they define torsion
classes of H!'. The second type of issue is given by the differential forms like pra p'aP ~ldz. This
differential form cannot be integrated because the formal integral is given by the series Y .o zP e,
which is not in W {(z). In this case, one cannot integrate the differential form even after multiplying
by a big power of p. Note also that the class represented by >, piz:pi_ldm is infinitely p-divisible,
since for every n > 1 it can be written as

n—1 o 0 )
(Z pzfl,'plldl}) + <pn Zpl"xplld$>
=0 i=n

and the first summand is exact, while the second is divisible by p™.

This problem was partially solved by Dwork by replacing W (x) with the ring of overconvergent
series

Wz) = {Z aizt € W([z]] } (vp(a;) — L) — oo for some n > 0 and i — oo} .
=0

Geometrically, the ring W(x)T is a ring of series such that the p-adic radius of convergence is
strictly bigger than 1, whereas W (x) is a ring of series with p-adic radius equal to 1. After passing

to K (z)T := W(xﬂ[%], one can easily check that K (x) 4 K (z)Tdz is surjective, so that the complex
K(z)' % K(z)tde
is quasi-isomorphic to K[0], as it happens over C.

The idea of working with overconvergent series has been used by Monsky—Washnitzer to define
a cohomology theory for smooth affine varieties over k. For a smooth algebra A over k, they
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construct a certain flat W-algebra Alo, playing the role of W (z)', such that Al /p ~ A. They
define Hypw (Spec(A4)/W) as the cohomology groups of

td a1 d =9
A AQALO/W_)QAZO/W%"'
with ﬁiﬁ 1K the Al -submodules of Qiﬂ IK of p-adically continuous differential forms. They

prove that this construction is functorial in A and does not depend on the lift. The groups
Hyw(Spec(A)/ W)[%} are finite-dimensional vector space, as proved by Mebkhout in [Meb97].

2.3. Crystalline cohomology. Grothendieck in 1966 introduced crystalline cohomology. His
point of view was quite different from the one of Dwork and Monsky—Washnitzer. Rather than
working explicitly with differential forms, he has constructed the crystalline cohomology groups
using a Grothendieck site, the crystalline site [Gro68]. The idea behind this construction is that,
even if the varieties over k do not have good lifts to characteristic 0, they do lift nicely locally. We
can say that, roughly speaking, the crystalline site contains all these lifts. The name comes from a
fitting similitude Grothendieck found with common crystals.

“A crystal has two characteristic properties: the rigidity, and the faculty to grow in
an adequate neighbourhood. There are crystals of all kind of substances: crystals of
soda, of sulphur, of modules, of rings, of relative schemes etc.”

Let us briefly recall Grothendieck’s construction. If X is a variety over k, he considered the category
Cris(X) of triples (U, T,~) where U C X is a Zariski open, U < T is a nilpotent thickening over
W defined by an ideal sheaf Z, and + is a divided power structure ? on Z such that v, (p) = p™/n!
for every n > 1. The category Cris(X), endowed with its natural Zariski topology, is called the
crystalline site of X (with respect to W). The category Xcs of sheaves of sets of Cris(X) is a
ringed topos with ring object Ox_.._, the sheaf that assigns at each triple (U, T, ) the set of global
sections I'(T', Or). The crystalline cohomology groups of X are then defined as H2; (X/W) =
H* (XcriSa OXCI.iS)-

Crystalline cohomology has been developed chiefly by Berthelot and Ogus (see [Ber74] and [BO78])
who proved that the crystalline cohomology groups of smooth and proper varieties are finitely
generated and satisfy Poincaré duality, the Kiinneth formula, and the Lefschetz trace formula for

Frobenius. Moreover, there is a theory of crystalline Chern classes and cycle classes, developed by
Berthelot-Illusie [BI70] and Gillet-Messing [GM87].

Given a sheaf F on Cris(X) and an object (U, T, ) € Cris(X), there is a natural way to construct
a Zariski sheaf Fp over T. This is defined as Fp(W) = F(U N W, W,~) for every Zariski open
W CT.

Definition 2.3.1. A crystal over X is a sheaf over Cris(X) satisfying the following two conditions.
(1) For every (U,T,~) € Cris(X), the sheaf Fr is quasi-coherent.

2A divided structure on an ideal I is the datum of map of sets v, : I — I for n > 1 satisfying all the algebraic
relations of the maps v, : (z) — (z) of the ideal () C Q[z] defined by v»(f) = f*/n! for n > 1. It is natural to ask
that Z has a divided power structure in order to construct Chern classes of line bundles in crystalline cohomology.
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(2) For every morphism f: (U, T,~v) — (U',T",~') in Cris(X), the comparison morphism
f*FT/ — Fr
is an isomorphism.

Crystals are the coefficients of crystalline cohomology. It is often useful to consider also their
rational variant, called isocrystals. As proven by Morrow [Morl9], isocrystals parametrise the
variation of rational crystalline cohomology groups of smooth and proper families of varieties.
In this situation, they carry a natural Frobenius structure, given by the variation of the action
of the Frobenius on the different crystalline cohomology groups. For this reason, for geometric
applications, it is often convenient to work with the category of F'-crystals (resp. F'-isocrystals),
which are crystals (resp. isocrystals) endowed with a Frobenius structure.

Even if the theory works well for smooth and proper varieties, the problems explained in §2.2 for
open smooth varieties remain unchanged. Indeed, if X lifts to a smooth formal scheme X over W,
then H2, (X/W) = H3g(X/W). In particular, the cohomology of A} is not of finite rank.

2.4. Rigid cohomology. In 1996 Berthelot defined another variant of crystalline cohomology,
called rigid cohomology [Ber96b]. The idea is to embed X Zariski-locally in some smooth formal
scheme P and then consider the de Rham cohomology of a certain decreasing chain of p-adic tubular
neighbourhoods of X in the rigid generic fibre Px. These tubes are chosen in order to avoid those
series which are not overconvergent. The geometric idea behind this construction is that if you have
a manifold M embedded in R"™, every small tubular neighbourhood of M has the same singular
cohomology as M.

The rigid cohomology groups Hp, (X/K) are vector spaces over K. Berthelot proved that if X is

smooth and proper, then H3, (X/K) = H;ris(X/W)[%] and if X is smooth and affine H3, (X/K) =
Hyw (X /W)[%] Thanks to this, he deduced that the rigid cohomology groups (with constant
coefficients) of smooth varieties are finite-dimensional [Ber97]. This result has been extended
to general varieties in [GKO02] and [Tsu03]. Rigid cohomology has many desirable properties as
Poincaré duality and the Kiinneth formula and it also admits a theory of Chern classes and cycle

classes, developed by Petrequin [Pet03].

The natural category of coefficients of rigid cohomology is the category of overconvergent isocrys-
tals. The finiteness of rigid cohomology with coefficients in an overconvergent isocrystal was proven
by Kedlaya in [Ked06a]. In this case, the proof relies on Crew’s local monodromy conjecture, proved
independently by André [And02], Mebkhout [Meb02], and Kedlaya [Ked04a]. Using Crew’s conjec-
ture, Kedlaya proved also a comparison theorem for convergent and overconvergent F-isocrystals,
called Kedlaya’s full faithfulness theorem [Ked04b]. Berthelot’s conjecture, remains the main open
problem in the theory (see [Lazl6], [EV24]). It says that the higher direct image of an overconver-
gent F-isocrystal via a smooth and proper morphism of smooth varieties is again an overconvergent
F-isocrystal.

A variant of the theory, also introduced by Berthelot, uses the concept of arithmetic D-modules,
and it has been developed in [Ber96a] and [Ber00]. This theory has better functoriality properties.
Thanks to Kedlaya’s semistable reduction theorem, [Ked11], there has been a great development
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(see [CT12] and [AC18]). This culminated to the proof of the Langlands correspondence for over-
convergent F-isocrystals by Abe, [Abel§|.

Finally, it is worth mentioning that in 2006 Le Stum introduced a site-theoretic approach to defining
rigid cohomology, [LeS11]. Its definition remains in the realm of p-adic geometry.

2.5. Other theories. Ogus in [Ogu84| introduced a variant of the crystalline site, called the con-
vergent site. This was motivated by Dwork’s observation that the isocrystals that can be endowed
with a Frobenius structure have an additional “local convergence property”. The convergent site
produces a smaller category of isocrystals, called convergent isocrystals, with better proprieties.
Nonetheless, even in this case, the cohomology groups one obtains are not finitely generated for
open smooth varieties.

The theory of log crystalline cohomology has been introduced by Kato in [Kat89]. This is an
integral variant of crystalline cohomology which has some additional nice properties. For example,
it is finitely generated for smooth varieties admitting a smooth compactification with a normal
crossing divisor at infinity. Log crystalline cohomology has a category of coefficients, called log-
(iso)crystals.

Kramer-Miller constructed in 2016 the category of F-isocrystals with log-decay (see [KM16]) mo-
tivated by some ideas of Dwork. At the moment, he built a complete theory over smooth curves,
while in higher dimension he gave only some partial definitions “in coordinates”. With this he
managed to give a new proof of a theorem of Drinfeld-Kedlaya on the slopes of overconvergent
F-isocrystals [KM19]. Wan conjectured that there should be a “log-decay” crystalline cohomology
theory associated to these F-isocrystals.

2.6. Edged crystalline cohomology. Recently we constructed in [D’Ad24b] a new cohomology
theory, which interpolates crystalline, log crystalline, and rigid cohomology and recover Kramer-
Miller’s F-isocrystals with log-decay. This theory depends on the choice of a superadditive map of
sets 7 : Nyg — NU{oo}, which is called edge type. For each edge type 7, the associated cohomology
theory is called 7-edged crystalline cohomology.

More precisely, for every marked scheme® X, we associated the marked crystalline site Cris(X),
of triples (U, T,~) as above, with the difference that U C X is an open marked subscheme. For
each edge type 7 we then constructed a sheaf of algebras O%  over Cris(X). The sheaf OF isa
sort of localisation of the sheaf Ox_,_, called 7-edged localisation, where we add poles whose order
is “p-adically small”. This construction depends on 7. The geometric picture behind the name is
that rather than making a neat cut to the scheme by removing the marking, we leave an edge of
type 7.

For an algebraic variety X over a field k, we defined
reis(X/K) = lim H*(Cris(Y), Oy )[3],
XY
where Y varies among the proper marked varieties containing X outside the marking. These vector
spaces are endowed with natural integral lattices which depend on the choice of the compactification.

3A marked scheme is roughly speaking a scheme with the choice of an effective Cartier divisor at infinity.
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The edge type 7(e) = e corresponds to rigid cohomology, exponential edge types as 7(e) = p°
correspond to Kramer-Miller’s theory, and the edge type 7(e) = oo correspond to crystalline coho-
mology. Note that the structural sheaves are constructed in such a way that O C O¥  when
"< . Keoris Koris
Besides recovering previous theories, with edged crystalline cohomology it is possible to get the
conjectured cohomology theory attached to log-decay isocrystals. Another crucial point is the
construction of a new integral theory for rigid cohomology with new finitenesses properties that
facilitates various geometric operations on the coefficients.

3. SLOPE FILTRATION AND DIEUDONNE MODULES

3.1. Slope filtration over a field. If k is a perfect field, the category of (coherent) crystals
over Spec(k) is equivalent to the category of finitely-generated W (k)-modules. To prove this, it is
convenient filtering the category Cris(Spec(k)) by truncated subcategories. For every e > 0, we
write X, for the PD-scheme (Spec(Z/p°), (p),~) with v, (p) = p™/n! for every n > 1 and we get full
subcategories
Cris(Spec(k)/X.) C Cris(Spec(k))

consisting of those PD-schemes killed by p®. Thanks to following lemma, Spec(W,(k)) endowed
with the natural PD-structure on (p) is the final object of Cris(Spec(k)/Ze).

Lemma 3.1.1. For every surjection A — k with nilpotent kernel, there exists a unique dotted
arrow which makes the following solid diagram commute

A

W) —» K

Proof. If o0: k — A is any set-theoretic section, one can prove that for every a € k, the sequence
o(a'/?")P" is eventually constant and independent of . This defines a multiplicative section 7: k —
A, called Teichmdiller lift. The section T can be extended to a ring morphism W (k) — A. ([l

Definition 3.1.2. For a scheme X of characteristic p, we write Isoc(X) for the isogeny category
of the category of coherent? crystals over X. This is called the category of (coherent) isocrystals
over X. We write F-Isoc(X) for the category of isocrystals M endowed with a Frobenius structure
®pe: MP) — M. These are the F-isocrystals.

Thanks to Lemma 3.1.1, the category of isocrystals over Spec(k) is the category of finite-dimensional
K (k)-vector spaces, where K (k) == W(k)[%] Thus, in this case, isocrystals form a very explicit cat-
egory. When we look at F-isocrystals over a perfect field there is a fundamental special behaviour:
the existence of the slope decomposition.

To explain the slope decomposition, let us first construct a special class of F-isocrystals, the ele-
mentary ones.

4Note that for us isocrystals will always be coherent.
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Construction 3.1.3. Let s,r be coprime integers with r > 0. We write E/, for an r-dimensional
vector space with basis e1, -+, e;. Let pg, I be the semi-linear bijection of E /. which sends e; to
e;+1 for i <r and e, to pie,.

Theorem 3.1.4 (Dieudonné, Manin). If k is algebraically closed, for every F-isocrystal (M, ¢nr),
there exist positive integers ai,- - , G, and rational numbers qi, - -+ , qm such that

m
(M, onm) = @E{f(h
1=1

In particular, the category of F-isocrystals over k is semi-simple.

Definition 3.1.5. The numbers ¢; are the slopes of (M, ¢y) and the dimension of ES% is the
multiplicity of each slope g;. The definition of slopes and their multiplicity extends to F-isocrystals
over any field (not necessarily perfect), by taking the base change to any algebraically closed field.
We say that an F-isocrystal over a field is isoclinic if it has only 1 slope (of any multiplicity).

By étale descent, the previous theorem admits the following corollary.

Corollary 3.1.6 (Dieudonné, Manin). If k is a perfect field, for every F-isocrystal (M, nr) over
Spec(k), there exist isoclinic F-isocrystals (M;, par,) such that

m

(M, on) = EP(Mi, o).

i=1
3.1.1. The situation over more general fields is more complicated. The category of isocrystals is
not equivalent to a category of vector spaces. The main problem is that we can not construct
Teichmiiller lifts as in the perfect case and the ring W (k) is not as well behaved as before (for
example, W (k)/p # k). One can construct instead Cohen rings A such that A/p = k. Nonetheless,
there is some indeterminacy given by the fact that two different choices A and A’ are not canonically
isomorphic. In other words, there is a non-trivial group of ring automorphisms of A which lift the
identity of k. The result, is that the category of crystals over k is the category of coherent A-modules
endowed with a continuous topologically p-nilpotent connection.

The slope decomposition of F-isocrystals over the algebraic closure of k£ does not descend in general
to a decomposition over k. Nonetheless, every F-isocrystal over Spec(k) admits the slope filtration.

Theorem 3.1.7 ([Kat79]). If k is a field, for every F-isocrystal (M,onr) over Spec(k), there
exists a unique Frobenius-stable filtration 0 = So(M) € S1(M) € -+ C Sp(M) = M such that
every quotient Siy1(M)/Si(M) is isoclinic of some slope q; and q1 < g2 < +++ < (.

The filtration of Theorem 3.1.7 is called the slope filtration of (M, pys) and in general it does not
split.

Example 3.1.8. The classical example of a non-splitting slope filtration can be constructed when
k =TFp(t). The F-isocrystal (M, py) is given by the Dieudonné module of the p-divisible group of
an elliptic curve over k with transcendental j-invariant (see §3.4). In this case, the slope filtration
induces an exact sequence

0O>N—-M-—->Q—0

with N of rank 1 and slope 0 and @ of rank 1 and slope 1. This sequence does not split.
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3.2. Frobenius-smooth schemes. In the study of crystals, there is a special class of schemes
with a particularly good behaviour.

Definition 3.2.1. We say that a scheme X over F, is Frobenius-smooth if the absolute Frobenius
F: X — X is syntomic.

The condition of being Frobenius-smooth is equivalent to X being Zariski locally of the form
Spec(B) where B has a finite (absolute) p-basis, [Dri22, Lem. 2.1.1], which means that there exist
elements x1,--- ,x, such that every element b € B can be uniquely written as

— a1l «
biE ngl ...xn"7

where 0 < oy < p—1 and b, € B. Thanks to §1.1 of [BM90], a ring B with a p-basis admits a
p-adic lift B — B. By [ibid., Prop. 1.3.3], the datum of a crystal over Spec(B) is then equivalent to
the datum of a coherent B-module M+t and topologically p-nilpotent derivations of M ™ associated
to some choice of a lift of a p-basis of B to B.

The main examples of Frobenius-smooth schemes that we will encounter are smooth schemes over
perfect fields and power series rings over perfect fields. If X is a Noetherian Frobenius-smooth
scheme, then it is regular by a result of Kunz (see Tag 0ECO of [Stacks]).

Definition 3.2.2. When X is irreducible, Noetherian, and Frobenius-smooth we define

oo
k= T(X,0x)""

i=1
to be the field of constants of X. Note that « is a field thanks to [Dri22, §3.1.2] and when X is in
addition a geometrically connected scheme of finite type over a perfect field, x coincides with the
base field. We also write K for W(f{)[%]
Proposition 3.2.3 ([Dri22, Cor. 3.3.3]). If X is an irreducible Noetherian Frobenius-smooth
scheme, then Isoc(X) is a K-linear Tannakian category.

This allows us to define the monodromy groups of isocrystals in this situation.

Definition 3.2.4. Let X be an irreducible Noetherian Frobenius-smooth scheme and let M be an
isocrystal over X. We define (M) to be the Tannakian subcategory of Isoc(X) generated by M. If
¢ is an Q-point of X for some perfect field Q, we define G(M, &) to be the Tannaka group of (M)
with respect to the fibre functor induced by £&. We call it the monodromy group of M with respect
to &.

3.3. Slope filtration over Noetherian Frobenius-smooth schemes. Let X be an irreducible
Noetherian Frobenius-smooth scheme over [F, with generic point n and let M be an isocrystal over
X such that F* M ~ M. In this section we want to prove that F-isocrystals over X with constant
Newton polygon admit the slope filtration. For this purpose, we use a result that allows us to
exploit the slope filtration of the restriction to the generic point. We recall the following theorem
by de Jong.
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Theorem 3.3.1 ([deJ98, Thm. 1.1]). If X = Spec(A) is affine with A a DVR and (M, +) is
a free F-crystal over X of finite rank, then for every (m,n) € Z X Zsq, we have

H (n, M) =" = HO(X, MH)F"=P",
Corollary 3.3.2. If X is as in Theorem 3.3.1 and M is an isocrystal over X such that F* M ~ M,
then H(n, M,)) = H°(X, M).
Proof. Let (M™,®,,+) be an F-crystal such that Mﬂ%] = M. Since X is of dimension 1, by
[Cre92a, Lem. 2.5.1], after possibly replacing M™ with its double dual we can assume M™ free.
We may further assume that the field of constants of A is algebraically closed thanks to [deJ98,

§3]. By Dieudonné-Manin classification both H%(n, M) and H(X, M) are generated by vectors v
such that @’ (v) = p™v for some m,n € Z x Z~g. The result then follows from Theorem 3.3.1. [

De Jong’s theorem can be extended to more general irreducible Noetherian Frobenius-smooth
schemes by using a Hartogs’ argument. We need the following lemma.

Lemma 3.3.3. Let f: A — A’ be an injective morphism of Noetherian Frobenius-smooth rings
which sends p-bases to p-bases and write f A A for a p-adic lift of f. For an isocrystal M over
Spec(A) write M for the pullback to Spec(A’) and M, M for the associated modules over A[p] and

A [I%] The following diagram is cartesian

H°(Spec(A), M) —— M

(3.1) l l

H(Spec(A"), M") —— M.

Proof. By [Dri22, Prop. 3.5.2], the module M is projective, which implies that M — M’ is injective.
We choose a lift {Z1,...,Z,} C A of a p-basis of A. By the assumption, this is sent by f to a lift of a
p-basis of A’. This choice then defines differential operators 01, ..., 0, of M’ that stabilise M C M’.
By [BM90, Prop. 1.3.3], this implies that H"(Spec(A’), M') C M’ (resp. H°(Spec(A), M) C M)
is the subspace of elements killed by 01, ...,3d,. This ends the proof. O
Theorem 3.3.4 ([DvH22, Thm. 3.2.4]). If X is an irreducible Noetherian Frobenius-smooth

scheme over F,, and N is a subquotient of an isocrystal M over X such that F*M ~ M, then
HO(n,N;y) = HY(X, N). In particular, the functor F-Isoc(X) — F-Isoc(n) is fully faithful.

Proof. By Theorem 5.10 of [DE22], we know that A is a subobject of some isocrystal M’ such that
F*M' ~ M’. Thanks to [ibid., Lemma 5.6], it is then enough to prove the result for an isocrystal
M such that F* M ~ M. By Zariski descent, we may further assume X = Spec(A) affine.

Let A a p-adic lift of A and let fl be a p-adic lift of Frac(A) equipped with a morphism A A

lifting the inclusion A C Frac(A). We write S for the set of prime ideals p of A of codimension 1
containing p and for p € S we write Ap - A for the p-adic completion of the localisation of A at p.

By construction, we have that Ap /p = Ay. Thls implies that Upe s Ap C A77 is dense with respect
to the p-adic topology since |J,cg 4p = Frac(A).

We first want to prove that ring B = ﬂpes flp is equal to A. To do this, we first note that B is
p-adically complete and p-torsion-free since each flp is so. In addition, by the p-torsion-freeness, we
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have that pB = mpes pflp, which implies that the morphism B/p — ﬂpeS flp/p - fln/p is injective.
On the other hand, thanks to the algebraic Hartogs’ lemma, we have that A/p = ﬂpe g flp /p. This
implies that A/p = B/p and in turn this shows that A = B.

Now, write M for the module over A[%] associated to M and for every p € S write M, for the
extension of scalars to flp[%]. By [Dri22, Prop. 3.5.2], we have that M is a direct summand of
fl[%]@” for some n > 0. Combining this with the fact that [l[%] =Npes flp[%], we deduce that
(3.2) M = (] M.

pes
By Lemma 3.3.3 applied to the inclusion A C Frac(A), if we denote by M, the fln[%]—module

associated to M,,, we get the cartesian square

H°(Spec(A), M) —— M

(3.3) | - l

H(n, M,)) —— M,

It remains to prove that every section v € H 0(77,./\/177) is also contained in M. By (3.2), this is
equivalent to showing that v is in M, for every p € S, which follows from Corollary 3.3.2. U

Remark 3.3.5. Theorem 3.3.4 improves, a theorem by Kedlaya (see [DK17, Thm. 2.2.3]). We
also prove in Theorem 5.2.1 a stronger form of Theorem 3.3.4 under the additional assumption that
M upgrades to an F-isocrystal with slope filtration.

Theorem 3.3.4 can be used to prove the following result on the existence of the slope filtration.

Theorem 3.3.6 ([DvH22, Cor. 3.2.6]). Let X be an irreducible Noetherian Frobenius-smooth
scheme over F,. If (M, ®a) is an F-isocrystal over X with constant Newton polygon, then it
admits the slope filtration.

Proof. As in [Kat79], by taking exterior powers, it is enough to prove that if (M, ® () has minimal
slope of multiplicity 1, then there exists a rank 1 sub-F-isocrystal of (M, ® ) of minimal slope.
Note also that the result is known on the generic point n of X (see [ibid.] and [dJO00, Claim 2.8]).
If S1(M,) € M,, is the subobject of minimal slope, up to taking a power of the Frobenius structure
for some s > 0 and a Tate twist, we may assume that it corresponds to a lisse Qgs-sheaf F;, over
7. This lisse sheaf admits models over every codimension 1 point by [dJO00, Prop. 2.10], thus it
admits an extension to a lisse Qgs-sheaf F over X by Zariski-Nagata purity theorem. The lisse
sheaf F corresponds then to an F*-isocrystal (N, @) over X which, by Theorem 3.3.4, embeds in
(M, @%) providing a model of the inclusion S1(M,) € M,,. This yields the desired result. O

Remark 3.3.7. Note that in [Ked24] Kedlaya proves the analogue of Theorem 3.3.6 for perfect
schemes using arc-descent.
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3.4. Dieudonné modules of p-divisible groups. One of the key aspects of crystalline cohomol-
ogy, which motivated the very construction, is its relationship with p-divisible groups. Let S be a
scheme of positive characteristic p.

Definition 3.4.1. A p-divisible group over S is a sheaf X of abelian groups over (Sch/S)gps such
that the following conditions are satisfied.

(1) X =lim X[p"] (p-torsion).

(2) p: X — X is surjective (p-divisible).

(3) X[p"] is a finite locally-free group scheme for every® n > 0.
Example 3.4.2. Basic examples of p-divisible groups are Q,/Z,, := hgn Z]p™ and pipe = hﬂn Hpr -
A reacher source of examples is provided by the p-divisible group attached to a commutative abelian
scheme A over S. This is defined by A[p™] := lim Alp™].

Given a p-divisible group X, we also have a notion of Cartier dual
XY = lim Hom(X[p"], Grm,s),
n

of Tate module

TpX = @X[Pn] = Hom(Qy/Zp, X),
P

and universal cover .
Xi=limX = Hom(Qp/Zp, X)[%]
P

These sheaves satisfy the fpqc sheaf condition as well. Note also that 7),X is a sheaf of Z,-modules
while X is a sheaf of Q,-vector spaces.

Lemma 3.4.3 ([SW13, Prop. 3.3.1)). If X is connected, then T,X, and X sit in the following ezact
sequence as fpqc sheaves

(3.4) 0—=TX =X —=X—0.

Remark 3.4.4. Note that (3.4) fails to be exact for the fppf topology since X — X fails to be
surjective.

We also recall that X° := h%mn X[p"]° is a p-divisible subgroup of X and if S is the spectrum of a
field we have an exact sequence

0—X° - X X0,
where X = hgln X[p™]®. This should be thought as a coarser version of the slope filtration.
Let us recall the following fundamental representability results for the objects we defined.
Theorem 3.4.5 ([Mes72]). If X is connected, then X — S is Zariski-locally represented by
Spf(R[[M]]) = Spec(R)
with M a finite free R-module.

Ot is actually sufficient to ask for this condition when n = 1.
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Corollary 3.4.6 ([SW13, Prop. 3.1.3, Prop. 3.3.1]). If S is perfect and X is connected, then
Zariski-locally X — S is represented by

Sp(R[[e}/”™, -, }/" 1)) — Spec(R)
while T,X — S is represented by
Spec(R[xi/poo, e ,a:(li/poo]/(xl, -+, xq)) — Spec(R).

Connected p-divisible groups should be thought then as commutative groups that are geometrically
p-adic fibrations in open balls. Following the original idea of Dieudonné, it has been developed a
linearisation procedure that captures the behaviour of these fibrations and their commutative group
structures. This can be now expressed using the crystalline site of S and reminds the Lie algebra
construction associated to a Lie group. This linearisation often provide a complete classification of
p-divisible groups, analogous to how Lie algebras classify simply connected Lie groups.

Definition 3.4.7. A Dieudonné module over S is a locally-free coherent crystal M™ over S endowed
with an isomorphism ® .+ : F*M = M such that

MPC Py (FFMY) C IMT,
We write DM(S) for the category they form.

Theorem 3.4.8 ([BBMS82],[deJ95, Thm. 4.1.1)). If S is a Frobenius-smooth scheme there exists
an equivalence of categories

D: {p-divisible groups over S} — DM(S),
called crystalline Dieudonné module functor.

3.5. Quasi-regular semiperfect rings. Another nice class of schemes where crystals have a par-
ticularly good behaviour are the affine schemes which are the spectrum of a quasi-regular semiperfect
Ting.

Definition 3.5.1. We say that a scheme S over I, is quasi-syntomic if its cotangent complex Lg/p,
has Tor-amplitude in the interval [—1,0]. We also say that an fpqc cover T' — S is a quasi-syntomic
cover if Ly, g has Tor-amplitude in the interval [—1,0]. Note that by [Stacks, Tag 0FJV], an fppf
cover T' — S is syntomic if and only if it is quasi-syntomic (hence the name). If S = Spec(R) is
quasi-syntomic and R is semiperfect, then we say that R is quasi-reqular semiperfect (qrsp).

The notion of quasi-regular semiperfect rings is related to another notion introduced by Quillen.

Definition 3.5.2. An ideal I of a ring A is said to be quasi-regular if the cotangent complex
La/r)/a has Tor-amplitude concentrated in degree —1.

The relation between the two definitions is explained by the following lemma.

Lemma 3.5.3. Let A be a perfect ring and A - R a quotient with kernel I, then R is qrsp if and
only if I is quasi-regular
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Proof. By functoriality, the absolute Frobenius of A induces on LL4/p, an automorphism. This has
to be the O-morphism since, in characteristic p, the differential forms da? vanish. This implies
that Ly/r, = 0. Thanks to the base change triangle for the cotangent complex, we deduce that
Lg/r, = Lg/a- It remains to prove that if R is quasi-syntomic, then mo(Lg/4) = 0. This follows
from the fact that, since A — R is surjective, the module Q}% /A vanishes. (]

Example 3.5.4. The main example of qrsp rings, besides the perfect ones, are the rings of the
form

Spec(R[xypoo,--- ,xtli/poo]/(u’vla"' 1 %d))

with R a perfect ring. Thus, by Proposition 3.4.6, an example is provided by the algebra of
functions of the Tate module of a connected p-divisible group over a perfect field. We will see that
the stabilisers of the formal homogeneous spaces of §6.3 are of this form.

Suppose that R is qrsp® and write S = Spec(R). As noted by Fontaine, the crystalline site
Cris(S/X¥,) admits a final object for every n > 0, as in the case of perfect fields. Let us briefly
recall the construction.

Let R’ be the perfect ring
lim (- 5 RS R)
and let J be the kernel of the composition
W(R’) — R> = R’/p.

We write” Aes(R) C W(Rb)[%] for the smallest p-adically complete subring containing W (R”) and
% for all x € J and n > 0. By construction, JAqs(R) admits a canonical PD-structure induced
by the one of J W(Rb)[%]. One can check that for every n the scheme Spec(Aeis(R)/p™) is the final
object of Cris(S/%,). As a consequence, the category of locally-free coherent crystals over S is

equivalent to the category of locally finitely-generated and free Agis(R)-modules.

Theorem 3.5.5 ([ALB23, Thm. 4.8.5]). If S is the spectrum of a qrsp ring, there exists a fully
faithful functor

D: {p-divisible groups over S} — DM(S),
which is functorial in S.
Corollary 3.5.6. If X is a p-divisible group over a qrsp ring R, we have the following natural
commutative diagram

T,X(R) ——— D(X)»=id

l l

X(R) —— (DX)[;)#=.

6Some of the things we will say here are actually true for general semiperfect rings.
7VVe give here a slightly ad hoc definition of Acis(R) that coincides with the standard one since R is qrsp, see
[SW13, Prop. 4.1.11]. In general, one should rather use the notion of PD-envelope.
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Proof. We have
TpX(R) = Homp((Qp/Zyp) r, X)
= Hom ;.o (Aaris(R), D(X))
= D(X)#=1.
We can argue similarly after inverting p to get the analogous result for X(R). O

3.6. Complete slope divisibility. We conclude this section with some recalls on the notion of
complete slope divisibility.

Definition 3.6.1. For a perfect ring R we say that an isoclinic Dieudonné module (M ™, ¢+ ) over
R is completely slope divisible if there exist integers s and a with s # 0 such that ¢}, Mt =p*MT.
We also say that a Dieudonné module (M, ¢,,+) over R is completely slope divisible if it is the
direct sum of isoclinic completely slope divisible Dieudonné modules and we say that a p-divisible
group is completely slope divisible if the associated Dieudonné module is so.

Remark 3.6.2. Since we assumed that R is perfect, the definition we gave is equivalent to the
usual one thanks to [OZ02, Prop. 1.3]. Note also that by [ibid., Cor. 1.5], if R is an algebraically
closed field, an isoclinic Dieudonné module is completely slope divisible if and only if it is defined
over a finite field.

Lemma 3.6.3. A Dieudonné module over F,, is completely slope divisible if and only if it is a direct
sum of isoclinic Dieudonné modules.

Proof. By [0Z02, Cor. 1.5] it is enough to prove that every isoclinic Dieudonné module is defined
over a finite field. By Dieudonné theory, this follows from the fact that a p-divisible group which
is geometrically isogenous to a p-divisible group defined over a finite field, is itself defined over a
finite field. O

Lemma 3.6.4. If (M, o y+) is a completely slope divisible Dieudonné module over F, and (N, pn+)
is a Dieudonné submodule such that M+ /N7 is torsion-free, then (N1, pn+) is completely slope
divisible.

Proof. By Lemma 3.6.3, we have to prove that (NT,¢n+) is a direct sum of isoclinic Dieudonné
modules. By the Dieudonné-Manin classification, there exists a Dieudonné submodule (N*, p5+) C
(N, pn+) of finite index which decomposes into a direct sum @xeqN ;“ of isoclinic Dieudonné mod-
ules. For an element x € N, there exist by assumption z, € M ;r for A € Q almost all 0 such that

T =3 ycox Since N¥ C NT is of finite index, there exists n big enough such that p"z € N, so
that p"ay € N7T for every A. This implies that p"zy € NT for every A and by the assumption that
M /N is torsion-free, we deduce that each x lies in N*. This yields the desired result. O

4. PARABOLICITY CONJECTURE

4.1. Introduction. Let X be a smooth geometrically connected variety over a perfect field k of
positive characteristic p. For an overconvergent F™-isocrystal (M, (I)j\/l) over X we write (M, ® )
for the associated F-isocrystal and we suppose that (M, ® ) admits the slope filtration

0=5(M) S 5(M) S ... € Sn(M)=M.
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Let 1 be a point of X with perfect residue field and consider the monodromy groups G(M,n) and
G(MT,n). The former algebraic group is a subgroup of the latter and they both are subgroups
of GL(M,,), where M,, is the fibre of M at n. In [D’Ad23] we proved the following fundamental
result about these groups.

Theorem 4.1.1. The subgroup G(M,n) C G(M?',n) is the subgroup of G(MT,n) stabilising the
slope filtration of M,,. Moreover, when M is semi-simple, G(M,n) is a parabolic subgroup of
G(MT,n).

This solved the parabolicity conjecture, initially proposed in [Cre92a, page 460]. Partial results
on this conjecture were previously obtained in [Cre92b], [Cre94], [Tsu02], [AD22], and [Tsu23].
Theorem 4.1.1 can be seen as a natural enhancement of Kedlaya’s full faithfulness theorem, proven
in [Ked04b].

When F is a finite field and M is semi-simple, we established in [D’Ad20] a fundamental comparison
theorem for the group G(MT,1)° and the corresponding monodromy group of the semi-simple /-
adic lisse sheaves with the same L-function as (MT,@L) (see also [Dril8] and [Pal22]). Since
the monodromy groups of lisse sheaves are much better understood,this comparison allows us to
compute G(MT,7)° in many cases where it was not known. This comparison theorem is a highly
nontrivial result which uses the Langlands correspondence for lisse sheaves and overconvergent
F-isocrystals, [Laf02], [Abel8]. By combining [D’Ad20] and Theorem 4.1.1, one can compute the
group G(M,n).

As first noted by Chai, the determination of G(M,n) in the case of Shimura varieties could have
been used to attack Chai-Oort Hecke orbit conjecture (see [Chal3, §7]). After the resolution of the
parabolcity conjecture, this insight indeed led to a proof of Chai—Oort’s conjecture. The conjecture
was first proved by van Hoften in the ordinary case [vH24|, and was subsequently generalised in
[DvH22|. In §6, we will present some ideas of the proof. Beyond the Hecke orbit conjecture, the

parabolicity conjecture has emerged as a powerful tool in the study of Shimura varieties modulo p,
as explored in [vHX21] and [Jia23].

Another consequence of Theorem 4.1.1, is the following result, which was a conjecture proposed by
Kedlaya in [Ked22, Rmk. 5.14].

Theorem 4.1.2 ([D’Ad23, Cor. 1.1.4]). Let X be a smooth connected variety over a perfect
field k and let (MT,<I>}LMI) and (MT,Q}L\AQ) be two irreducible overconvergent F"-isocrystals over
X with constant slopes. If (S1(M1), @, s, (amy)) and (S1(Mz), Patyls,(my)) are isomorphic F™-

isocrystals, then (MJ{, (I)jvll) and (MT, @}L\AQ) are isomorphic overconvergent F"-isocrystals.
The conjecture was solved in dimension 1 and when k is a finite field by Tsuzuki in [Tsu23].

One of the main tools introduced and studied in [D’Ad23] is the notion of f-hull of a sub-F™-
isocrystal.

Definition 4.1.3. Let (N, ®5) C (M, ®Ppq) be an inclusion of F™-isocrystals. The {-hull of
(N, ®p) in (M, Ppq) is the smallest subobject of (M, ® ) containing (N, ®yr) and coming from
an overconvergent F™-isocrystal. We denote it by (N, Pxr)-
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We obtained the following fundamental result which relates the slope filtration with the operation
of taking f-hull7s.

Theorem 4.1.4 (Theorem 4.3.2). Let X be a smooth variety over a perfect field k and let (N, @) C
(M, D) be an inclusion of F™-isocrystals over X. If M comes from an overconvergent isocrystal
and has constant slopes, then S1(N, @y ) = S1(N, Px7).

When X is a curve, we first reduced the statement to the case X = A,lg, then we proved an analogous
result for the generic point of A,lc using de Jong’s reverse filtration (Theorem 4.3.9). Finally, we
deduced the global result from the generic one. The idea of using Theorem 4.3.9 was suggested to
the author by Kedlaya and independently used in [Tsu23, Prop. 6.1]. In his proof Tsuzuki makes
use also of a certain filtration for overconvergent F-isocrystals, namely the PBQ filtration, that
he constructs in [Tsu23, Thm. 3.27]. Our proof avoids the use of this filtration and uses instead
some ideas of what is now called edged crystalline cohomology, [D’Ad24b]. At the same time, with
Theorem 4.1.4 we recovered the PBQ filtration and we extended it to arbitrary smooth varieties,
[D’Ad23, Cor. 5.4.2].

To deduce Theorem 4.1.1 from Theorem 4.1.4, we proved first that Theorem 4.1.4 implies the
analogue of Theorem 4.1.1 for some slightly different groups: the monodromy groups of F*°-
isocrystals (Proposition 4.4.2). Subsequently, to pass from this variant to the original statement,
we introduced a third type of monodromy groups: the monodromy groups of isocrystals with
punctual Q) -structure, defined in §4.2.8. These latter monodromy groups are Q)'-forms of Crew’s
monodromy groups (the ones defined in [Cre92al), thus we are then able to prove Theorem 4.1.1.

For higher dimensional varieties we deduced Theorem 4.1.4 from the case of curves, thanks to a
new Lefschetz theorem for overconvergent F™-isocrystals (Theorem 4.5.1).

4.2. Punctual Q)"-structures. In the proof of the parabolicity conjecture we had to deal with
the fact that the field of scalars of the category of isocrystals is in general much bigger than the field
of scalars of the category of F-isocrystals. We encountered this issue when we wanted to prove that
Theorem 4.1.4 implies Theorem 4.1.1. This implication, by its nature, is easier for the monodromy
groups of F™-isocrystals, but it is much harder for the monodromy groups defined by Crew (without
Frobenius structure). To jump from one setting to the other we slightly modified both categories.
We first replaced the category of F"-isocrystals with the category of F*°-isocrystals, namely the
2-colimit of the categories of F™-isocrystals for various n. If k is big enough, this new category is
a Qp-linear category. On the other side, we constructed the category of isocrystals with punctual
Q) -structure (see §4.2.2), which is simply the category of isocrystals endowed with the choice of a
Q) -linear lattice at some fibre. This other Tannakian category is also Q)"-linear.

There is a natural functor between these two categories thanks to Dieudonné—Manin classification
(Lemma 4.2.5). To prove Theorem 4.1.1 we relate the monodromy groups of these objects and their
overconvergent variants thanks to Proposition 4.2.9, which is an analogue of the homotopy exact
sequence for the étale fundamental group. Let us explain this more in detail.

Hypothesis 4.2.1. Throughout this section, we assume that k is endowed with the choice of an
inclusion F,, C k. In particular, for every perfect field extension €2/k we have a preferred embedding
Qpf — K(9Q).
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Definition 4.2.2. If 7 is a geometric point of X, an isocrystal with (punctual) Qp"-structure over
(X,n) is a pair (M, V() where M is an isocrystal and Vi is a Q" -linear lattice of w;, (M), namely
a Qp-linear vector subspace Vg C wy(M) such that

A morphism of isocrystals with Qp'-structure (M, Vi) — (N, V) is a morphism of isocrystals

f+ M — N such that w,(f)(Vm) C V. We write Isocgur (X,7) for the category of isocrystals
with punctual Q' -structure over (X, 7).

Lemma 4.2.3. If X is geometrically connected, the category ISOCQ;T(X, n) has a natural structure
of a Q)"-linear neutral Tannakian category.

Now that we have a neutral Tannakian category of isocrystals with smaller field of scalars, we want
to study its interaction with the category of F"-isocrystals.

Construction 4.2.4. Let /k be an algebraically closed field extension. For an F"-isocrystal
(M, @) over €2, we write wqur (M, @) C M for the Q)-linear vector subspace of vectors v € M

such that ®%,v = p/v for some (4,5) € Z=o x Z.
Lemma 4.2.5. The vector space wour(M, @) is a Qp-linear lattice of the K(€2)-vector space M.
Proof. This is an immediate consequence of Theorem 3.1.4. ([l

Definition 4.2.6. We say that wqu: (M, ®p) is the Dieudonné-Manin Qp"-structure of (M, ®nr).
The assignment (M, @) — wour (M, ®ar) produces a Q' -linear fibre functor wgur : F*-Isoc(€2) —
Vecgyr. If n is a Q-point of X, we write

wy,qu : F*-Isoc(X) — Vecgyr
for the composition waur © n* and we write
Ay : F>-Isoc(X) — Isocqur (X, 1)

for the functor obtained by sending (M, ®%y) — (M, wy qur (M, @5;)). We say that an object in
the essential image of A, is an isocrystal with Dieudonné-Manin Q,"-structure over (X,n).

Remark 4.2.7. The existence of the Dieudonné-Manin Q)-structure of an F-isocrystal over an
algebraically closed field has its own interest. For example, thanks to [Ked06a], if k is any field of
characteristic p, one can associate to a variety X/k the finite-dimensional Q)" -linear vector spaces
w@;r(Hriig(X otz /K (k¥8))) and their variant with compact support. This assignment produces a
Qp'-linear cohomology theory with all the desired properties (e.g. Poincaré duality, the Kiinneth
formula, etc.). This solves in a minimal way Serre’s obstruction to the existence of a Qp-linear

cohomology theory in characteristic p.

Definition 4.2.8. Let (X,n) be a geometrically connected variety over k endowed with a geo-
metric point 7. For an F"-isocrystal (M, ®a ) we write G(M, %, n) for the Tannaka group of
(M, %) with respect to wy,Qu and G(M, Vpy,n) for the Tannaka group of (M, V) with respect
to wy qur, where Vjq is the Dieudonné-Manin Q)"-structure induced by ® . We also denote by
G(M,®%,n)™" the Tannaka group of constant F*°-isocrystals in (M, ®5), namely those F°°-
isocrystals coming from Spec(k). We give analogous definitions in the overconvergent setting.
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The fundamental result for these monodromy groups is the following exact sequence, reminiscence
of the homotopy exact sequence for the étale fundamental group.

Proposition 4.2.9 ([D’Ad23, Prop. 3.2.8]). For a f-extendable F"-isocrystal (M, ®rq), we have
the following commutative diagram of algebraic groups over Q"

I —— G(MaVMvn) — G(M’(I)OO"U) - G(M’(I)ooﬂ])cst — 1

I I }

1 —— GMT, Vg, ) —— GMTE, 8L ) —— GMTE, @l et —— 1.

The rows are exact, the first two vertical arrows are closed embeddings and the last arrow is a
faithfully flat morphism.

Remark 4.2.10. Thanks to Theorem 4.1.4 one can also show that the morphism G(M, ®%, n)*" —
G(MT, q)j\’/too, n)®! is an isomorphism.

4.2.1. Another crucial analysis we had to undertake in [D’Ad23, §3] involved comparing the mon-
odromy groups in Isocgy: (X, n) and Isoc(X). Generally, it is easy to construct examples where the
scalar extension of the monodromy group of an isocrystal with Q'-structure from Q" to K results
in a larger monodromy group than the monodromy group of the isocrystal. However, for isocrystals
with Dieudonné-Manin Qp"-structure, we proved that the expected base change property holds.

Proposition 4.2.11 ([D’Ad23, Prop. 3.3.2]). For an F"-isocrystal (M, ®q), if Vaq is the associ-
ated Dieudonné-Manin Qy"-structure, we have G(M,n) = G(M, Vi, 1) ®qu K.

4.3. The case of curves.

Notation 4.3.1. Let (M, P ) be a f-extendable F"-isocrystal over X with constant slopes. We
say that (M, @) satisfies MS(M, @) (where MS stands for “minimal slope”) if for every sub-
F-isocrystal (N, ®y) C (M, ), the isocrystals Si(N) and Sy (N) are the same. We also say
that X satisfies MS(X) if for every n > 0 and every f-extendable F"-isocrystal (M, ® ) over X,

we have that MS(M, ® ) is true.
Theorem 4.1.4 can be then written in the following form.
Theorem 4.3.2. A smooth variety X over a perfect field k satisfies MS(X).

4.3.1. At the beginning of [D’Ad23, §4] we proved some reductions of Theorem 4.3.2. We showed
that we could assume n = 1, that we could check MS(X) on isoclinic sub-F-isocrystals, and we
proved the following lemma.

Lemma 4.3.3. Let f: Y — X be a dominant étale morphism between smooth varieties.

(1) MS(Y) implies MS(X).

(2) If f is finite, then MS(X) implies MS(Y).
Combining Lemma 4.3.3 and [Ked05], in dimension 1 we reduced MS(X) to MS(A}). In turn, to
prove MS(A1) we used an analogue of MS(—) for the generic point of A}.
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4.3.2.  Consider the ring Og := (W|[t]())", where (—)" denotes the p-adic completion. This is a
complete discrete valuation ring unramified over W with residue field k(t). Let Ogt C Og be the
subring of functions which converge in some annulus * < |t| < 1. These two rings are both endowed
with a Frobenius lift () = t” and a derivation 9;. Write & and £ for the respective fields of
fractions.

Definition 4.3.4 ((, V)-modules). If E is either £ or £T, we say that a finite dimensional vector
space M over E is a (p, V)-module if it is endowed with a (-linear isomorphism @y : M = M
and an additive morphism Vg, : M — M which satisfies the Leibniz rule and such that Vy, ooy =

ptp_l(pM o Vat.

The category F-Isoc(k(t)) is the category of (i, V)-modules over £ and we denote by F-Isoc! (k(t))
the category of (i, V)-modules over £f. Thanks to Theorem 5.1 [Ked04b], the natural functor

F-Isoc! (k(t)) — F-Isoc(k(t))
is fully faithful.

Proposition 4.3.5 (Kedlaya, Tsuzuki®). If N C M is an inclusion of (¢, V)-modules over & and
M is t-extendable, then S1(N) = S1(N).

To prove Proposition 4.3.5 we first need the following construction.

Construction 4.3.6. Let Q' be the image of the composition of the natural morphisms
(M1)Y := Homgt (MT,ET) — Homg (M, £) — Homg (N, E) =: NV.

We have natural maps
MY = (M"Y @¢t £ - QN @gt £+ NV.
The first arrow is surjective by construction, the second one is surjective because the morphism

MY — NV is surjective. Note that even though QT C NV, the second map needs not to be injective.
Dualising with respect to £ we get inclusions N C QV C M.

Lemma 4.3.7. The (¢, V)-module Q" is the T-hull of N in M. In other words, N is the unique
submodule of M which contains N and comes from some N C M' such that (NT)V — NV is
injective.

Proof. By construction, QV is f-extendable and it contains IV, so that N € @Y. On the other hand,

we have morphisms (MT)Y — (NT)V — NV, where the first one is surjective. By definition, the
morphism (WT)v — NV factors through @, which implies that Q¥ C N. O

We recall now the reverse filtration introduced by de Jong in [deJ98, Prop. 5.5]. For this, we need

to introduce two other discrete valuation fields lifting k(t).

8We first learned about a proof of Proposition 4.3.5 from Kedlaya via a private communication. The proposition
also corresponds essentially to [Tsu23, Thm. 2.14].
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Definition 4.3.8. Let O, be the ring of Witt vectors of k(¢) (which is contained in the ring
[y =Ty in de Jong’s notation). Every element of Oz can be written uniquely as S22 filp" where
[fi] is the Teichmiiller lift of some f; € k(t). Consider the subring (93-; C Og of those series such
that the t-adic valuations of f; are bounded below by some linear function in . This subring is
preserved by the Frobenius of (95 (and it is contained in I'y . = I'9 1 . in de Jong’s notation). We

write £ and £ for the fraction fields.

Theorem 4.3.9 ([deJ98, Prop. 5.5]). For a p-module M|

alg OvET ET the following statements are
true.

(i) MTlg admits a reverse slope filtration, i.e. there exists a filtration

0= S5 (Ml),) € SIV(M],) € -+ € Siev(M],) = M,

of @-modules over E' such that (S{eV(MT)/SfEVI(MT)) Rz £ is isomorphic to
Smfi(Malg)/Smfifl(Malg) .
(i) If M' is isoclinic of slope s/r, after possibly multiplying s and r by some positive integer,
the p-module M;g[pl/r] admits a basis of vectors {v1,...,vq} such that o(v;) = p*/"v;.
Lemma 4.3.10. Let M be a p-module over EY and let N be an isoclinic p-module over £ of slope
s/r. For every morphism v : M — N of @-modules, if the restriction of 1 to M1 is injective, then

the mazimal slope of M is s/r and the rank of Sp,(M)/Sm—1(M) is smaller or equal than the rank
of N.

Proof. This is a variant of [Ked04b, Lem. 4.2]. Since Sllg is flat over £F and £ @z EF — £ is
injective by [Ked04b, Prop. 4.1], then v|,,;+ induces an injective morphism

W M =M g - Nog & - Nog €.

The restriction of ¢’ to S}V (M;rlg) induces a non-trivial morphism
S{eV(M;flg) Rzt ESN Xe £

This implies that the slope of S{ev(Milg

over, by Theorem 4.3.9.(ii), after possibly enlarging 7, the dimension of the Qp(pl/ ")-vector space
(S{ev(MaTlg)[pl/r])“":ps/r is equal to the rank of S,,(M)/S;,—1(M). Similarly, by the Dieudonné-

Manin decomposition, (N ®g¢ E[pY/ T])S":”S/T is a Q,(p'/")-vector space of dimension equal to the
rank of N. We then obtain the inequality of ranks thanks to the injectivity of v’. O

), which is the maximal slope of M, is s/r. More-

4.3.3. Proof of Proposition 4.3.5. By the previous reductions, it is enough to prove the result when
N is isoclinic of slope s/r and N = M. In that case, we have to check that N has minimal slope
s/r and that the inclusion N C S1(N) is an equality. By Lemma 4.3.7, the morphism N o NV
satisfies the assumptions of Lemma 4.3.10, thus N has minimal slope s/r. Moreover, since

rk(N) = tk(NY) > tk(Sp(N)/Sm_1(N")) = 1k(S1(N)),
we get N = S1(N). O
In order to relate Proposition 4.3.5 with MS(A{) we had to prove the following proposition.
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Proposition 4.3.11 ([D’Ad23, Prop. 4.2.12]). Let N C M be an inclusion of (¢, V)-module over
K{(u), where M is {-extendable and has constant slopes. The (p,V)-module N @ £ is the t-hull of
NREINM®E.

The main tool for this, is an algebraic description of the ring £F. This viewpoint led to the definition
of edged crystalline cohomology in [D’Ad24b]. Let us recall it.

Construction 4.3.12. Let A, be the image of the morphism W (uy, ..., u,) = W{u) which sends
u; — U; := pu’ and let m,, C A,[t] be the maximal ideal (p,t,1,...,u,). We denote by B, C O¢

the image of (Au[t])m, — Og. The rings A, and B, provide integral models of the rings of

overconvergent series. More precisely, we have that lim An[%] = K{(u)" and lign(Bn)A[l] =&t

P
Note that the A,-algebra B,, can be also written as

(i)

(@1t—p,...,unt™—p) ", :

Theorem 4.3.13 (See also [Tsu23, Prop. 6.1]). A smooth curve X over a perfect field k satisfies
MS(X).

Proof. By the above reductions, we may assume X = A,{;. Let N C M be an inclusion of (¢, V)-

module over K (u), where M is {-extendable and has constant slopes. By Proposition 4.3.11, we

have that N ® £ is the t-hull of N ® £ in M ® £. Therefore, by Proposition 4.3.5,
SIN)RE=51(N®&E) =S51(N®E) =5 (N)®E.

This implies that S1(IN) and S (N) have the same slope and the same rank, so that S;(N) = S1(N).
This concludes the proof. ]

4.4. Chevalley theorem and filtrations. In this section Hypothesis 4.2.1 is in force. Let n €
X () be a perfect point of X and let (M, (I)jvl) be an overconvergent F™-isocrystal with constant
slopes. Consider the Dieudonné-Manin fibre functor wy gur (M, %) — Vecqyr associated to 1.

Write G for G(MT,®}L(/[°°,7)) and H for G(M, ®,n).

Definition 4.4.1. For every e, let G}r{e be the torus with character group éZ and G%oo =
lim Gi/°. If 7 is the lem of the denominators of the slopes of M, for every (M', %) € (M, %))
we denote by S, Jr(wn,qur (M7, @50)) C wy,qur (,/\/E%,(I)ﬁ,) the Qp"-linear vector subspace of slope
at most s/r. This defines an exact ®-filtration Se of W, Qur indexed by %Z, that in turn defines
a morphism A : G%OO —» G%T — G (cf. [Saa72, §2.1.1, page 213]). We say that A is the quasi-

cocharacter attached to the slope filtration of M,. We denote by Pg(\) the subgroup of G of those
®-automorphisms of w, qur preserving Se (as in [ibid., §2.1.3, page 216]).

Proposition 4.4.2. If MS(X) is true then H = Pg()\). In particular, if G is a reductive group
then H is a parabolic subgroup of G.

Proof. Since H C Pg(\), we have to prove that Pg(A) € H. By Chevalley’s theorem, there
exists an overconvergent F>-isocrystal (N, @j\’/oo) c (M, <I>j\’4°O> and a rank 1 sub-F*-isocrystal
(L, ®¥) C (N, ®%7), such that H is the stabiliser of the line

L = wy qu (L, @) Cwyou NV, Py) = V.
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We have to prove that Pg()) stabilises L. Let (£, ®7) be the f-hull of (£,®,) C (N, ®y) and
write L for W, Qur (L, ®7). We denote by s the slope of (£, ®,) and by V<% C V the subspace of

slope smaller or equal than s. Since MS(X) is satisfied, we know that £ = S1(L£) = S1(£), which
implies that L = LN V=% Since £ C N admits by definition a f-extension, Pg()\) stabilises L. On
the other hand, Pg(\) stabilises V=* because (N7, @j\’[oo) is an element in (M, @j\’jo}. This implies
that Pg()) stabilises L, thus Pg(\) C H as we wanted. If G is reductive, H = Pg()) is parabolic
by [Saa72, Prop. 2.2.5, page 223]. O

Using Proposition 4.4.2 we deduced the following technical result.

Proposition 4.4.3 ([D’Ad23, Prop. 4.3.5]). Let X be a smooth geometrically connected variety over
k such that every dense open U C X satisfies MS(U) and let (M, q)j\/l) be an overconvergent F"-
isocrystal over X. If (L, ®F) € (M, ®%y) is a t-extendable rank 1 F*>-isocrystal, then (ET,CDEOO)
y y T T,OO

is in (M, Oy "),

In turn, this gives a way to determine G(M,n) knowing G(MT,n) and G(M, &, n).

Corollary 4.4.4. Under the assumptions of Proposition 4.4.3, the group G(M,n) is equal to the
intersection G(MT, 1) N G(M, &, 1) Dqu K.

Proof. Since constant F°°-isocrystals are f-extendable, Proposition 4.4.3 implies that
G(M, D%, m)™ = GMT, BT, ).

We deduce that the left square of the diagram in Proposition 4.2.9 is cartesian. To get the final
result we extend the scalars of the cartesian square from Q" to K. Indeed, thanks to Proposition

4.2.11, we know that G(M, Vi, n) ®qu K = G(M,n) and G(MT, Vg, n) ®qu K = GMt. np). O

4.5. A Lefschetz theorem. The main issue to reduce Theorem 4.1.4 to the case of curves is due
to the existence of wild ramification in positive characteristic. One would like to find a smooth
connected curve C' C X such that for every overconvergent isocrystal M over X, the Tannakian
category (MT) spanned by M is equivalent to the Tannakian category (M'|c) spanned by the
restriction of MT to C. This is possible, for example, for local systems in characteristic 0, or
for tamely ramified ¢-adic lisse sheaves in positive characteristic (see [Esnl7]). The failure of the
existence of such a nice curve for general (-adic lisse sheaves is already clear for A? (see [ibid., Lem.
5.4]). On the other hand, if rather than considering all the objects at the same time one focuses
on one object at a time, then such a nice curve exists over finite fields both for ¢-adic lisse sheaves
and overconvergent F"-isocrystals (see [Kat99, Lem. 6 and Thm. 8] and [AE19, Thm. 3.10]).
We extended this result to docile overconvergent F"-isocrystals over general perfect fields, namely
those overconvergent F"-isocrystals which admit a log-extension with nilpotent residues.

Theorem 4.5.1 ([D’Ad23, Thm. 4.4.3]). Let Y C IP’% be a smooth connected projective variety

of dimension at least 2 and let D C Y be a simple normal crossing divisor. If (MT,CDL) s an
overconvergent F™-isocrystal over X :=Y \ D docile along D, then there exists a smooth connected
curve C C X such that the restriction functor (M) — (MT|c) is an equivalence of categories.
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This theorem is obtained by a combination of various Lefschetz-type results. One of the main
ingredients is [AE19, Cor. 2.4], proven by Abe—Esnault, which gives a class of curves C' such that
the restriction functor (MT) — (MT|c) is fully faithful. To prove Theorem 4.5.1, we show that
for at least one of these curves the restriction functor is also essentially surjective. This condition
can be tested on rank 1 objects, which have the advantage of coming from p-adic characters of
the étale fundamental group and they are easier to extend from C' to X. The difficult part is to
impose that the extended characters come from overconvergent F"-isocrystals. In our proof, this
is done by combining Proposition 4.4.3 and the following lemma on the ramification of rank 1 lisse
Qp-sheaves.

Lemma 4.5.2. Let X be a smooth connected variety over k, D C X an irreducible divisor and Y a
lisse Q,-sheaf over X \ D. There exists a dense smooth open D' C D and a conic closed subscheme
Z CTX xx D' of codimension 1 at every fibre which satisfies the following property.

Ry(Z): Let C C X be a smooth curve not contained in D and intersecting D' at
some closed point x such that T'C, is not contained in Z,. For every rank 1 lisse
sheaf £ € (V) ramified at D, L|c is ramified at x.

Interestingly, in order to use Proposition 4.4.3 we need Theorem 4.1.4 for curves. Therefore, the
proofs of Theorem 4.1.4 and Theorem 4.5.1 are intrinsically intertwined.

5. THE LOCAL ENHANCEMENT OF THE CONJECTURE

5.1. Statement and strategy of the proof. Let X be a smooth irreducible variety over a perfect
field with a closed point x and let (MT, ® () be a semi-simple overconvergent F-isocrystal over X
with constant Newton polygon. Since the Newton polygon is constant, the associated F-isocrystal
(M, ® ) admits the slope filtration. Thanks to the parabolicity conjecture, we know that if M
is a semi-simple overconvergent F-isocrystal, then G(M,z) C G(MT,z) is a parabolic subgroup
P C G(MT, x). By the Levi decomposition, we can write P as the semi-direct product U x L with
U the unipotent radical and L a Levi subgroup of P. The group L is isomorphic to the monodromy
group of the graded object associated to (M, P ). By [BM90, Thm. 2.4.1] and the invariance of
the étale site with respect to the perfection morphism XPef — X the algebraic group L is also
isomorphic to the monodromy group of M| xpert. In this section we want to explain how U can be
obtain as well as the monodromy group of a certain base change of M.

Let X/* be the formal completion of X at z and write G(M/%) for the monodromy group of the
restriction of M to X/*.

Theorem 5.1.1 ([DvH22, Thm. 3.4.4]). The monodromy group G(M/® x) of the restriction of
M to X/* is the unipotent radical of the monodromy group G(M,x).

When M is the crystalline Dieudonné-module of an ordinary p-divisible group this result is proved
by Chai by doing explicit computations with Serre-Tate coordinates. Our proof builds instead on
the techniques developed in [D’Ad23] and uses new descent results for isocrystals from [Dri22],[Mat22].

Since X/* is geometrically simply connected, each isocrystal underlying an isoclinic F-isocrystal
over X/% is trivial by [BM90, Thm. 2.4.1]. This already implies that G(M/?,z) is unipotent. To
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relate G(M/®,z) and the unipotent radical of G(M,x), we pass through the respective generic
points.

Write % for the function field of X and k, for the function field of X/*. We first prove in Theorem
5.2.1 that passing from X to Spec(k) we do not change the monodromy group of M, as in the
étale setting. Then we show that if we extend k to k°°P the monodromy group of M becomes the
unipotent radical of G(M,x) (Proposition 5.4.2). This means that the extension of scalars from
k to k*P kills precisely a Levi subgroup of G(M,x). Subsequently, using the fact that the field
extension k C k, is separable, we show that when we extend F-isocrystals from k5P to k", their
slope filtration does not acquire new splittings (Proposition 5.3.5). This is enough to prove that
the local monodromy group G(./\/l/ T x) is the same as the monodromy group over k°P. By the
previous part of the argument we then deduce that G(./\/l/ ¥ x) is precisely the unipotent radical of

G(M,x).

5.2. Monodromy group at the generic point. As we mentioned, in the previous section, we
proved Theorem 5.1.1 passing through the generic point n € X. For this purpose we proved the
following result of independent interest.

Theorem 5.2.1 ([DvH22, Thm. 3.2.8]). Let X be an irreducible Noetherian Frobenius-smooth
scheme over F,. If (M, ® ) is an F-isocrystal over X with slope filtration, then G(M,npert) =
G(Mna nperf)-

Proof. Let K be the fraction field of W (k) with « the field of constants of X and let K’ be the
fraction field of the ring of Witt vectors of nP®f. Thanks to [Sta08, Prop. 3.1.8] applied with
F =K, F' =K, and I’ = K/, it is enough to prove that (M) — (M,) is fully faithful and sends
semi-simple objects to semi-simple objects. The first part is proven in Theorem 3.3.4 and does not
need the assumption on the slope filtration. For the second part we have to prove that for every
irreducible N € (M), the base change N, is semi-simple.

Since N is irreducible, it is a subquotient of M®™ @ (MVY)®" for some m,n > 0 and by the
assumption M®"™ @ (MY)®" can be endowed with a Frobenius structure with slope filtration.
After taking the sth-power of the Frobenius structure for some s > 0 and making a Tate twist,
we may further assume that A appears in the unit-root part of an F®-isocrystal. Therefore,
taking a Jordan—-Holder filtration, we may assume that A is a subquotient of an isocrystal M’
which admits a unit-root F*-structure @ such that (M’, @) is semi-simple. By [BM90, Thm.
2.4.1], the F*-isocrystal (M’, ® ) corresponds to a semi-simple lisse Qps-sheaf over X. By the
regularity of X, the lisse sheaf remains semi-simple when restricted to the generic point. This
implies that (./\/l%,@ M;,) is semi-simple. To conclude we have to prove that M% is semi-simple
as well. Let NV) C M; be the socle of M;, namely the sum of all the irreducible subobjects
of M;. By maximality, N, is stabilised by the F“-structure, thus it upgrades to a subobject
(N @pz) © (M7, @) By semi-simplicity, the inclusion admits a retraction, which induces in
particular a retraction of Ny C M;. This implies that N; = M;, as we wanted. O

5.3. Descent for isocrystals. We see now various descent results that we will need in the next
section for (F-)isocrystals. Let f: Y — X be a pro-étale II-cover of Noetherian Frobenius-smooth
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schemes over F), where II is a profinite group and let y € Y () be an Q-point of Y with  a perfect
field.

Lemma 5.3.1. For every isocrystal M over X, the mazximal trivial subobject of f*M descends
to a subobject N C M. Moreover, if M is endowed with a Frobenius structure ® oy, the inclusion
N C M upgrades to an inclusion (N, ®pr) C (M, Prq) of F-isocrystals and (N, ®y) is a direct
sum of isoclinic F-isocrystals.

Proof. Since the cover Y — X is a quasi-syntomic cover, it satisfies descent for isocrystals thanks
to [Dri22, Prop. 3.5.4] (see also [Mat22] or [BS23, §2]). By the assumption,
Yoxx Yo lim (Y xx V)Y
UcrH

where the limit runs over all the open normal subgroups of IT and (Y xx Y)Y = HM enyu Y s
a disjoint union of copies of Y. The group II acts on Y xx Y in the obvious way. Since f*M
comes from X, it is endowed with a descent datum with respect to the cover Y — X. This datum
consists of isomorphisms "My  yyv = My, yyv for each U C II and y € II. The functor v*
sends trivial objects to trivial objects, which implies that the descent datum restricts to a descent
datum of 7, the maximal trivial subobject of f*M. Therefore, T descends to a subobject N' C M,
as we wanted. If M is endowed with a Frobenius structure, then it induces a Frobenius structure
on each isocrystal My,  yyu and this structure preserves each maximal trivial subobject of given
slope. This implies that the descended object N' C M is stabilised as well by the Frobenius and
the induced Frobenius structure satisfies the desired property. ]

Proposition 5.3.2. Let (M, ®Prq) be an F-isocrystal with the slope filtration and write v for
the associated Newton cocharacter. If R,(G(M, f(y))) € U, and Grg,(f*M) is trivial, then
G(f*M,y) = Ru(GIM, f(y)))-

Proof. Since Grg, (f*M) is trivial, the group G(f*M,y) is a unipotent subgroup of G(M, f(y))
sitting inside U,. Therefore, we are in the situation of [D’Ad23, Prop. 3.1.2] and we have to prove
that (ii) is satisfied. This amounts to show that for every m,n > 0, the maximal trivial subobject
T C f*(ME™ @ (MV)®") descends to a semi-simple isocrystal over X. By Lemma 5.3.1, we know
that 7 descends to an isocrystal AV which is the direct sum of isocrystals which can be endowed
with an isoclinic Frobenius structure. Since R, (G(M, f(y))) is contained in U,,, we deduce that N
is semi-simple, as we wanted. O

Lemma 5.3.3. If k'/k is a separable field extension and k' admits a finite p-basis, then k' @y k'
admits a finite p-basis as well.

Proof. Thanks to [Mat70, Thm. 26.6], the field & admits a finite p-basis ¢1,- - ,t4 which extends
to a finite p-basis t1, -+ ,tg,uy, - ue of k. We claim that T' == {t; ® 1}; U{u; @ 1}, U{1l ®@u;}; is a
finite p-basis of k' ®y k’. It is clear from the construction that the elements of I' generate k' @y, &k’
over (k' ®g k')P. On the other hand, the exact sequence

0— O /e, Ok (K @ k') = Qg r JE, = (o, @1 K) © (K @1 Qo) — 0
shows that the elements dvy with v € I' form a basis of the free module Q,lc,®k K, We deduce the
p-independence of the elements of I' by arguing as in [Stacks, Tag 07P2]. O
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Lemma 5.3.4. Let X be a Frobenius-smooth scheme over Fy,. For every F-isocrystal (M, ®aq)
with a locally-free lattice and constant Newton polygon such that all the slopes are different from 0,
the vector space of global sections fized by the Frobenius structure is trivial.

Proof. Since X is Frobenius-smooth, by [BM90, §1.3.5.ii] the global sections of any isocrystal over
X embed into the global sections of the base change to XP°™f. Over XPf we argue as in the
proof of [Kat79, Thm. 2.4.2], namely we assume XPf = Spec(A) affine and we embed A into a
product of perfect fields. This reduces the problem to the case of perfect fields, where the result is
well-known. ]

Proposition 5.3.5. Let k C k' a separable extension of characteristic p fields with finite p-basis
and let (M, ®pq) be a free F-isocrystal over k with slope filtration Se of length n. If My admits a
Frobenius-stable splitting of the form Ny & Sy_1(Myr) with Ny some subobject of My, the same
is true for M.

Proof. Since Speck’ — Speck is a quasi-syntomic cover, it satisfies descent for isocrystals thanks to
the descent results of Drinfeld and Mathew in [Dri22], [Mat22] (see [BS23, Thm. 2.2]). Therefore, in
order to descend N to k it is enough to show that the splitting Nyg, i © Sp—1(Mig, k) is unique.
Suppose that N '@kl D Sn—1(Mpg,) was a different splitting. Then there would exist a non-
trivial Frobenius-equivariant morphism N ,é,®k w — Sn—1(Mpg,k). In other words, the F-isocrystal
Hom (N, s Sn—1(Mig,kr)) would have a non-trivial Frobenius-invariant global section. Since
the slopes of Hom(Ny, g 1/, Sn—1 (Mg, k) are all negative by definition and &' @ k" admits a finite
p-basis by Lemma 5.3.3, this would contradict Lemma 5.3.4. (|

5.4. Proof of the local enhancement. We are ready to put all the previous results together
and prove Theorem 5.1.1. Let X be a smooth irreducible variety over a perfect field and let « be a
closed point of X. We denote by k the function field of X and by k, the function field of X/*. We
also write 7°°P (resp. 77) for the points over the generic point of X associated to a separable (resp.
algebraic) closure of k.

Lemma 5.4.1. The fields k and k; have a common finite p-basis. In particular, k C k; is a
separable field extension.

Proof. By [Mat70, Thm. 26.7], it is enough to show that Qj /¥, ®h ko = Q. /e, Write A for the
local ring of X at x and A2 for the completion with respect to the maximal ideal m,. Since A is
regular, thanks to [Mat70, Thm. 30.5 and Thm. 30.9], we deduce that Q114/1Fp ®a A} = Qi\Q/IFp‘
We get the desired result after inverting m, — {0}. O

Proposition 5.4.2. If (M, ® ) is an F-isocrystal over X such that R,(G(M,7)) C U,, then
G(Mnsep,ﬁ) = RU(G(M7 77))

Proof. By Theorem 5.2.1 we have that G(M, ) = G(M,,,7), so that we are reduced to prove the
statement for G(M,,, 7). Note that the cover f : n°P — 5 is a pro-étale Gal(k*P/k)-cover and
Grg, (f*M,) is trivial because 7*P is simply connected. This shows that we can apply Proposition
5.3.2 and deduce the desired result. O

Proposition 5.4.3. If (M, ® ) is an F-isocrystal over X coming from an irreducible overcon-
vergent F-isocrystal with constant Newton polygon, then HO(X/* (Sy1(M))/®) = HO(X/* M/*).
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Proof. By Galois descent we may assume that the ring of constants of X is an algebraically closed
field. The inclusion HO(X/*, (Sy(M))/®) € HO(X/*, M/*) is an inclusion of F-isocrystals over
k. We suppose by contradiction that this is not an equality. Let g, > ¢1 be the greatest slope
appearing in H(X/*, M/%) and let v be a non-zero vector such that ®”  (v) = p%"v for n > 0.

¢ M/
Write (M, @ ) for the base change of (M, ® () to 7°P.

By the parabolicity conjecture R, (G(M,7)) is contained in U, because (M, ® ) comes from an
irreducible overconvergent F-isocrystal. Proposition 5.4.2 then implies that the monodromy group
G(M, 7)) is equal to G(M,7j) NU,. Therefore, the line spanned by v determines a rank 1 subobject
L C S,(M)/S,_1(M) stabilised by the Frobenius. The preimage of this isocrystal in S,(M),
denoted by N, is kept invariant by the Frobenius and sits in an exact sequence

0= S (M) =N —=L—=0.

Since (M, ® () comes from an irreducible overconvergent F-isocrystal, the sequence does not admit
a Frobenius-equivariant splitting by [D’Ad23, Thm. 4.1.3]. By Proposition 5.3.5, the base change
of this extension to kj " does not split as well. This leads to a contradiction since v is a vector in
HO(X/* M/*) which produces a non-trivial global section of N’ C M. O

We write 7, for the generic point of X/ and G(M/®, 2" for the monodromy group of M/® with
respect to the perfection of 1,. We can finally prove the following theorem.

Theorem 5.4.4 ([DvH22, Thm. 3.4.4)). If (M, ® ) comes from a semi-simple overconvergent
1socrystal endowed with a Frobenius structure with constant Newton polygon, then

G(M®,np™) = Ry (G(M, n2™)).

Proof. Write G for the group G(M,n) and V for the induced G-representation. By the parabolicity
conjecture we have that R,(G) is contained in U, where v is the Newton cocharacter. Since
X/ is geometrically simply connected we deduce that Grg,(M)/® is trivial. This implies that
G(M/?, ngerf) C R,(G) C U,. Therefore, in order to apply the criterion of [D’Ad23, Prop. 3.1.2] it
is enough to show that for every NV € (M), the space of global sections of N /* is the same as the
fibre at x of some direct sum of isoclinic subobjects of N'. To prove this, we may assume that N
can be endowed with a Frobenius structure ® 5 and (N, @) is irreducible. Thanks to Proposition
5.4.3, we deduce that the fibre of S1(N) at x is the same as H°(X/®, N/*). This yields the desired
result. O

6. THE HECKE ORBIT CONJECTURE

6.1. Strategy of the proof. The overall structure of the proof of Theorem 1.3.2 is similar to the
proof of the ordinary Hecke orbit conjecture in [vH24] and is based on a strategy implicit in the
work of Chai—Oort and sketched to us by Chai in a letter.

To explain the proof we first need to establish some notation. Let Z C C be a reduced closed
subvariety that is stable under the prime-to-p Hecke operators, as in the statement of Theorem
1.3.2. The central leaf is contained in a Newton stratum Shg 173 € Shg y which has an associated
Newton fractional cocharacter

vy G/~ = G.
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Attached to this cocharacter is a parabolic subgroup P,, with unipotent radical U,,.

Let Z%™ be the smooth locus of Z. Then Corollary 3.3.3 of [vH24] tells us that the monodromy group
of the crystalline Dieudonné module M of the universal p-divisible group over Z™ is isomorphic
to P,,. Theorem 5.1.1 then tells us that for z € Z5"(F,), the monodromy group of M both over
Z/* and over C/7 is equal to U,,. We want to show that Z /* = C/* which allows us to conclude

that Z°™ and hence Z are equidimensional of the same dimension as C'.

For this we construct generalised Serre-Tate coordinates on the formal completion C/*. To be
precise, we show that there is a Dieudonné-Lie ny—algebm9 at over Zp governing the structure of
C/*. For example, if Shg 7 is a Siegel modular variety and C' is the ordinary locus, then C/* is a
p-divisible formal group by the classical theory of Serre-Tate coordinates, and at = D(C/ T) is its
Dieudonné module, equipped with the trivial Lie bracket.

We note that C/* is a formal homogeneous for a formal group ﬁ(a) attached to the nilpotent
Dieudonné-Lie Q,-algebra a = aﬂ%]. The stabiliser is a profinite group scheme II(a™) over F,.
The formal scheme underlying ﬁ(a) is the universal cover of the p-divisible group associated to a*.
In the Siegel case, this unipotent formal group is the identity component of the group of self-quasi

isogenies of the p-divisible group A, [p>°] which are compatible with the polarisation up to a scalar.

The Dieudonné-Lie @p—algebra a turns out to be isomorphic to Lie(U,,) equipped with a natural
F-structure. For a Dieudonné-Lie @p—subalgebra b C a, we constructed a formally smooth closed
formal subscheme Z(b™) C C/*. This formal subscheme is again a formal homogeneous space under
a unipotent formal group II(b) C I(a). Chai and Oort proved that Z/* admits such a description.

Theorem 6.1.1 ([CO22]). There is an F-stable Lie subalgebra b C a such that Z/® = Z(b%).

To prove Theorem 1.3.2, we are then reduced to show that the restriction of M to formal subschemes
Z(b) C C/* for b C a have smaller monodromy.

Theorem 6.1.2 (Theorem 6.5.1). The Lie algebra of the monodromy group of M over Z(b%) is
contained in b.

By the previous discussion, we know that the Lie algebra of the monodromy group of M over Z/®
is equal to a. Therefore, if Z/* = Z(b%) for some b, then a C b C a, so that Z/* = Z(bt) =
Z(at) = /=,

The proof of Theorem 6.1.2 uses the Cartier—Witt stacks of Drinfeld [Dri20] and Bhatt-Lurie [BL22]
in combination with the interpretation of C/* as a formal deformation space of the trivial torsor
for the profinite group scheme II(a*), due to Chai-Oort [Cha20] in the PEL case. In particular, we
show that the closed formal subscheme Z(b*) C C/* can be identified with the formal deformation
space of the trivial torsor for a certain closed subgroup II(b") C II(a™).

Remarlf 6.1.3. The unipotent formal group f[(a) is closely related to the “unipotent group dia-
mond” Gb>0 introduced in Chapter II1.5 of Fargues—Scholze, [FS21]. To be precise, there should be
an isomorphism II(a)? ~ G7° of v-sheaves in groups over Spd(F,).

99ee Definition 6.2.1.



ON THE p-ADIC SLOPE FILTRATION 35

6.2. Dieudonné—Lie algebras. One of the key tools we use in the proof is a generalisation of
Serre-Tate coordinates. This is done using the new notion of Dieudonné-Lie algebras. In §6.3 we
will see how to attach to a certain class of Dieudonné—Lie algebras, that we call plain Dieudonné—Lie
algebras, a formal homogeneous space.

We write Zp for W(F,) and (@p for its fraction field. We also write ¢ for the Frobenius lift on both
Zp and @p.

Definition 6.2.1. A Dieudonné-Lie Z,-algebra is a triple (a™, @q+,[—, —]) where (a*, @q+) is a
Dieudonné module over F, (see Definition 3.4.7) and

[—,—]:a" xat = a

is a Lie bracket such that the following diagram commutes

at[L] x at [P b1 ot (L]
l[*:*] l[*v*]
@t [}] " at [},

A morphism of Dieudonné-Lie Zp—algebras is a Zp—linear map f : a” — bt that respects the Lie
brackets and induces a homomorphism of Dieudonné modules. If f is injective with finite cokernel
we say that f is an isogeny. We write X(a™) for the p-divisible group attached to the Dieudonné
module (a™, ¢yt ). We also say that a Dieudonné-Lie Zp—algebra is completely slope divisible if the
underlying Dieudonné module is so (see Definition 3.6.1).

Similarly, a Dieudonné—Lie @p-algebm is a triple (a, ¢q, [—, —]) where (a, ¢q4) is a rational Dieudonné
module over F, and [—, —] is a Lie bracket of a satisfying the same compatibility. We write

(Cl, Pas [_7 _])

for the Dieudonné-Lie @p—algebra obtained from a Dieudonné-Lie Zp-algebra

(a+’ Pat [_7 _])
by inverting p. We also denote by X(a) the universal cover of the p-divisible group associated to
an integral lattice of (a,¢q). This assignment does not depend on the choice of the lattice. We
will very often omit the Frobenius structure and the Lie bracket in the notation of Dieudonné-Lie
algebras.

Remark 6.2.2. Alternatively, Dieudonné-Lie Zp—algebras (resp. Qp—algebras) can be defined as
the Lie algebra objects in the symmetric monoidal category of F-crystals (resp. F-isocrystals) over
[F,, such that the underlying F-crystal (resp. F-isocrystals) is a Dieudonné module.

Example 6.2.3. The first example of a Dieudonné-Lie Zp—algebra is the Dieudonné module of the
internal-Hom p-divisible group Hy attached to a p-divisible group Y over F,, denoted by D(Hy ).
Indeed, the Lie bracket coming from the commutator bracket on 7,Hy = Hom(Y,Y"), induces an
p-equivariant Lie bracket on a. The Lie bracket on Hom(Y,Y") clearly sends the identity component
Hom(Y,Y)° to itself. This leads to our second example of a Dieudonné-Lie Zp—algebra, the one
induced on D(HY,).
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Given a Dieudonné-Lie Zp—algebra, there is also a natural procedure to get many others isogenous
Dieudonné-Lie Z,-algebras by using the Frobenius structure. Let us see this more in details, as it
will play an important role.

Construction 6.2.4. For a Dieudonné-Lie Z,-algebra (a*,¢q+,[—,—]) and n € Z, we define
®"(a™) to be the Zp—submodule @ (a™) C a. This Zp—submodule is preserved by the Frobenius
and the Lie bracket of a. We then get on ®"(a') a Dieudonné-Lie Zp-algebra structure. Note that
©;" induces an isomorphism ®"(at) = a™®") of Dieudonné-Lie Z,-algebras.

Lemma 6.2.5. Forn > 0, there is a natural exact sequence of fpqc sheaves
0 — T,X(a™) = T,X(®"(a1)) — X(a™)[F"] — 0.

Proof. Thanks to the isomorphism ¢;™: ®"(a®) = a™(P") this is equivalent to proving that we
have an exact sequence

0 — T,X(a") = T,X(a™)P") = X(at)[F"] — 0,

where T,X(at) — T,X(a™)®") is induced by the nth-power of the (relative) Frobenius of X(a%).
The result then follows by a classical diagram chasing, using the fact that the Frobenius of X(a™)
is faithfully flat. 0

The fundamental lemma we will use very often to study Dieudonné-Lie Qp—algebras and reduce
ourself to the abelian case is the following one.

Lemma 6.2.6. Let a be a Dieudonné—Lie Qp-algebm where all the slopes are negative. Let 1 be
the smallest slope of a and let b C a be an F'-stable Q,-subspace that is isoclinic of that slope. Then
b is contained in the centre of a.

Proof. There are no nonzero F-equivariant maps b ® a — a because, by assumption, all the slopes
of b ® a are strictly smaller than the slopes of a. Hence the restriction of the Lie bracket to b x a
is trivial. ([l

6.2.1. Integrability. In general, for Dieudonné-Lie Zp—algebras, the BCH formula is not well-defined.
We want to clarify here how to bypass this issue in our context. Let us first recall the formula as
presented in [Ser09, Part I, Chapter IV, §7-8]. We focus on the nilpotent setting, since it is the
only one we will need.

Definition 6.2.7. We say that a Dieudonné-Lie @p—algebra (a, ¥q, [—, —]) is nilpotent if the under-
lying Lie algebra (a, [—, —]) is nilpotent. We also say that a Dieudonné-Lie Zp—algebra is nilpotent
if the associated Dieudonné-Lie @p—algebra is so.

For positive integers d,n, we denote by A, (d) € N™ x N the subset of elements (r,s) € N* x N
with r = (r1,...,rn) and s = (s1,...,s,) such that > ;(r; + ;) = d and r; + s; # 0 for every i.
The BCH series can be written as

BCH(X,Y):zii > (—1)n—1[X“Y51---XTnYSn].

n
dn i, 7i!s;!
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If a is a nilpotent Dieudonné-Lie Qp—algebra, then for every a, b € a, there is a well-defined element
BCH(a,b) € a. Indeed, for d and n big enough the terms of the series vanish. For (Dieudonné-)Lie
Zp—algebras, instead, the series might not be defined when the denominators are too divisible by p.
It then makes sense to consider the following definition.

Definition 6.2.8. We say that a nilpotent Dieudonné-Lie Zp-algebra is integrable if for every
a,b € at, each summand
arlbsl e a"’nbsn]

dn [Ti rils;!

(_1)n—1 [
of BCH(a, b) lies in a™.

Lemma 6.2.9. Ifa™ is a nilpotent Dieudonné-Lie Zp—algebm, then p*a™ is an integrable Dieudonné—
Lie Z,-subalgebra.

Proof. Write bt for the Dieudonné-Lie Z,-subalgebra p?at C at. We have to prove that for every
v,w € bT, each term

Urlwsl e Urnwsn]

dn [, rilsi!

lies in b*. By the bilinearity of the Lie bracket, we have that [b,b%] C p?b6F. Thus, by induction,
we deduce that for every e > 2 and every set of elements {vq,...,v.} in bT, the nested bracket
[v1 - --ve] lies in p**~2bF. The nested bracket [v" 1w ---v"7w"] is then an element of p?@—2pT.
Since the denominator dn [, r;!s;! divides (d!)?, we get the desired result thanks to the fact that

a—1 | o
P=r— is an element of Z,. O

(_1)n—1[

6.3. Formal homogeneous spaces. In this section we focus on the construction of the functor
Z: {Plain Dieudonné-Lie Zp—algebras} — {Formal Lie varieties over Fp}

that was defined in [DvH22] to describe the infinitesimal behaviour of central leaves of Shimura
varieties. As we will see, Z(at) admits by construction a transitive action of the formal group II(a)
(Construction 6.3.1). Hence the name formal homogeneous space attached to a™.

Construction 6.3.1. Let a be a nilpotent Dieudonné—Lie @p—algebra. The Lie bracket on a induces

a Lie bracket on X(a). The BCH formula defines then a formal group structure!”

mie: X(a)xX(a) — X(a)

with inverse the multiplication by —1. We define II(a) to be the formal group (X(a),my). The
assignment a — II(a) defines a functor

: {Nilpotent Dieudonné-Lie @p—algebras} — {Formal groups over ﬁp} .

Construction 6.3.2. If a™ is an integrable nilpotent Dieudonné-Lie Zp—algebra, the Lie bracket
on a’ induces a Lie bracket on T,X(a™). The formal group structure mp;. on X(a) restricts then

10g¢e [ibid.,§2.1] for the details on the notion of formal schemes in force.
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to a group scheme structure on 7,X(a™). We denote by II(a™) the group scheme (7,X(a™), mye).
Note that mp,;e preserves p™T,X(a™) for every m > 0, so that
(a*) = lim T (a*),
m>0
where II,,,(at) is the affine finite scheme X(a™)[p™] endowed with the group scheme structure
induced by mpi.. This shows that II(a™) is a profinite group scheme.

In this case, the assignment a®™ — II(a™) defines a functor

II: {Integrable nilpotent Dieudonné-Lie Zp—algebras} — {Proﬁnite group schemes over Fp} .

Remark 6.3.3. If the slopes of a are negative, then ﬁ(a) is a connected affine formal group.
Similarly, in the integral situation, if the slopes of a® are negative, then II(a™) is a connected
profinite group scheme.

To continue our analysis, it will be convenient to work under additional assumptions on a™.

Definition 6.3.4. A plain Dieudonné—Lie Zp—algebm is a completely slope divisible integrable
Dieudonné—Lie Zp—algebra such that all the slopes are negative.

As we have seen in Construction 6.2.4, for every at and n € Z, there is a Dieudonné-Lie Zp—algebra
®"(a™), constructed using the Frobenius, which is isogenous to a™. It is easy to check that if a™ is
plain, even ®"(a™) is plain for every n.

Construction 6.3.5. Let a* be a plain Dieudonné-Lie Zp—algebra. For every n > 0, we write
1" (at) for I(®"(a™)) and, for m > 0, we write II? (a™) for IT,,(®"(a™)). There are natural maps
ap: My (a™) — M7 (at). We define Z™(a™) to be the fppf-quotient

I (a ") /oo (I (a))

over Alg%p. We also write Z(a™t) for the fppf-sheaf obtained as the inductive limit
p
lim Z™(a™).
y

There is a natural action of II(a) on the formal scheme Z(at) and an equivariant map II(a) —
Z(at). We say that Z(a™) is the formal homogeneous space attached to a™.

Remark 6.3.6. By Lemma 6.2.5, if a* is abelian, then Z"(a*) = X(a™®)[F"] and Z(at) = X(a™).
In general, the formal scheme Z(a®) should be thought as the fpqc-quotient II(a)/II(a™) (see
[DvH22, Lem. 4.3.12]). Note also that in [ibid., Lem. 4.3.11] we prove that Z(a™t) satisfies the
universal property of a quotient stack over the category of formal schemes.

We want to prove a fundamental representability result for Z(a™). For this we use a construction
that allows us to reduce many statements to the case when a* is abelian.

Construction 6.3.7. Let a™ be a plain Dieudonné-Lie Zp—algebra and let u; be the minimal slope
of a*. The formal group structure my;e induces a morphism of affine schemes II}; (af, ) x II}: (a™) —

17 (a™). By Lemma 6.2.6, the group TI(a,,) is in the centre of TI(a), thus we also get a morphism
X(af )[F" x Z"(a*) = Z"(a")
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which endows Z"(a™) with a left action of X(a},)[F™]. This makes Z"(a*) an fppf-torsor over
Z™(a" /af ) under the finite syntomic group scheme X(a;f )[F"].

Proposition 6.3.8. If at is a plain Dieudonné-Lie Zp—algebm, then for everyn > 1 the fppf-sheaf
Z™(a™) is represented by SpecRy, ,, where m is the dimension of X(at) and

Rom =FplX0, o Xl [(XF", - XE)).
Moreover, the torsor Z™(a*) — Z™(a™ /a)f,) of Construction 6.3.7 is trivial.

Proof. We want to prove the result by induction on the number of slopes of a™. In the isoclinic
case the result follows from Proposition 2.1.2 of [Mes72]. For the inductive step, we first note that
by Construction 6.3.7, the fppf-sheaf Z"(a™) is represented by a connected scheme which is finite
and syntomic over Z"(a%t/af ). The result is then obtained as a consequence of Proposition 3.6.8
of [DG70, Chapter III]. O

Corollary 6.3.9. If a™ is a plain Dieudonné-Lie Zp—algebm, then Z(a™) is a formal Lie variety
of the same dimension of X(a™).

By Corollary 6.3.9 we get a functor

Z: {Plain Dieudonné-Lie Zp—algebras} — {Formal Lie varieties over Fp} .

Note that the formal schemes Z(a™), besides having a natural action of II(a), are endowed with a
special class of closed formal subschemes given by the following construction.

Construction 6.3.10 (Strongly Tate-linear subspaces). For a Dieudonné-Lie Qp—subalgebra bCa
we write b for the intersection b N a’. The inclusion b C a*t induces a closed embedding
Z(b") C Z(a™). Following Chai-Oort, we say that a closed formal subscheme Z C Z(a™) obtained
in this way is a strongly Tate-linear subspace, see [Cha20].

Lemma 6.3.11. The natural map I(a) — Z(a®) is an fpqe-torsor under the affine group scheme
I(a™).

Proof. Thanks to Lemma 6.2.5, for every n > 0 we have a cartesian diagram
O(at) —— I"(a™)

(6.1) l 0 l
I,(at) —— I"(a™).

By diagram chasing, we deduce that II"(at) — Z™(a™) is a torsor for II(a™). This yields the
desired result. O

Lemma 6.3.12. For every plain Dieudonné—Lie Zp—algebm at, the natural map f[(a) — Z(a™)
induces an isomorphism

(a) ~ Z(at)Pert,

Proof. For every n > 0, we have the following factorisation of the nth-power of the absolute
Frobenius of Z(a™)
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Z(a™) £ Z(a™)

where Z(® "(a%)) — Z(a™) is induced by the natural inclusion ®~"(a*) C a™. This implies that

Z(a ) = m 257" (@),

Since ), @ "(at) = 0, we deduce that II(a) — lim Z(® is a monomorphism, thus by
[DvH22, Lem. 2.1.2] it is a closed immersion. On the other hand H(a) — lim | Z(® "(a™h)) is flat
since for every n > 0 the map II(a) — Z(® "(at)) is so. This implies the desired result. O

6.4. Deformation spaces as formal homogeneous spaces. For p-divisible groups Y and Z
over a perfect field x, Chai and Oort constructed finite group schemes

Hom®™ (Y[p"], Z[p"]) € Hom(Y [p"], Z[p"]),
where Hom(Y'[p"], Z[p"]) is the sheaf of homomorphisms from Y [p"] to Z[p"]. The natural maps
w : Hom®™ (Y[p"], Z[p"]) — Hom™ (Y [p"*], Z[p" ™))
make the inductive limit

li Hom™ (¥ "], Z[p")

a p-divisible group over x, denoted by Hy,z. This is called the internal-Hom p-divisible group of Y
and Z. When Y = Z we denote this p-divisible group by Hy. If Y is endowed with a G-structure
for some reductive group G, one can also define the variant 7-[30/ C Hy looking at endomorphisms
which preserve the G-structure (see [DvH22, §4.4]).

Thanks to [CS17, Lem. 4.1.7], the scheme-theoretic p-adic Tate module of Hy,z is isomorphic to
the group scheme Hom(Y, Z) of homomorphisms from Y to Z. By [ibid., Lem 4.1.8], there is also
an isomorphism

D(Hy,7)[L] = Hom(D(Y)[2], D(Z)[X])<o,

where Hom(ID)(Y)[%], ]D(Z)[l]) denotes the internal-Hom in the category of F-isocrystals and (—)<q
denotes the operation of taklng the subspace of slope < 0. By the proof of Lemma 4.1.8 of [ibid.]
there is a canonical isomorphism of formal group schemes

(6.2) Hy,z = Hom(Y, Z)[1)],

where Hy, 7z is the universal cover of Hy 7.
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6.4.1. If Y is a completely slope divisible p-divisible group over F,, then the deformation space
Defs(Y) of the trivial Aut(Y)-torsor admits a closed immersion into the deformation space
Def(Y) of Y, see [Cha20, Lem. 3.6, Thm. 4.3]. Its image is identified with the subspace of
deformations of Y that are fpqc locally isomorphic to the constant deformation of Y. It follows from
[Kim19, §5] that there is an action of Aut(Y)° on Def.s(Y) and an equivariant map Aut(Y)° —
Def,s(Y) which is an Aut(Y')°-torsor in the fpqc topology. Essentially, one can think Defgu(Y)
as the fpqc quotient

Aut(Y)°/Aut(Y)°.
In what follows we want to explain how Def,s(Y) is related to the formal homogeneous spaces of
§86.3.

Remark 6.4.1. If Y = Y; & Y5 has two slopes, then Aut(f/)o is isomorphic to 7'~[y1,y2 and
Aut(Y)° ~ T, Hy, y, so that Defgs(Y) >~ Hy, y,. This gives Defg,s(Y) the structure of a p-
divisible formal group. When Y is ordinary, then Defg,(Y) = Def(Y) and the formal group
structure on Def(Y") is the one coming from the classical Serre-Tate coordinates, see [vH24, §4].

6.4.2. Let Y be the universal p-divisible group over the sustained deformation space Defgus(Y),
let Z C Defg,s(Y) be a formally smooth closed subscheme, and let G(Mz) be the monodromy

group'! of the isocrystal M = D(y)[%] restricted to Z. We have a natural inclusion

Lie(G(Mz)) € D(H5)[3] = ay

of nilpotent Lie algebras. In turn, ay is naturally a Lie subalgebra of Lie(GL(]D)(Y)))[%]. Since M
has the structure of an F-isocrystal we get, by [Cre92a, §2.2], an isomorphism

G(Mz)P) — G(My),
which induces an isomorphism
Lie(G(Myz))®) — Lie(G(My))
compatible with the F-structure on D(H;’/)[%] In particular Lie(G(Myz)) C ay is an F-stable Lie
subalgebra.
6.4.3. If we consider a;; = ID(H5 ) as a nilpotent Dieudonné-Lie Zp—algebra, then it is completely
slope divisible. Nonetheless, it is generally not integrable. For simplicity, in what follows we will

assume c@ integrable, which happens, for example, when the length of the slope filtration is smaller
than the prime p.

The exponential morphism E: X(ay) = HS — Aut(Y)° sending f — S°°, f?/i! defines an iso-
morphism of formal schemes. This isomorphism identifies the formal group law mr; with the
composition group law, so that we get an isomorphism

E: (ay) = Aut(Y)°

He monodromy group is taken with respect to the closed point of Z. We remove in this section the choice of
the point in the notation.
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of formal group schemes. Under the assumption that a;ﬁ is integrable, this isomorphism restricts
to an isomorphism of profinite group schemes

E:(a)) = Aut(Y)°.
Finally, this gives an isomorphism
E: Z(a}) = Defgus(Y).

What we gained from this isomorphism is that we have now a notion of strongly Tate-linear subspace
of Def,5(Y) (see §6.3.10). We expect that the monodromy of the restriction of M to these special
subspaces should be determined by the Lie algebra structure of (b,[—,—]) € (ay[—,—]). More
precisely, we expect the following to be true.

Conjecture 6.4.2 (D’A—van Hoften). For every Dieudonné—Lie Qp—subalgebm b C ay, we have
Lie(G(MZ(bJr))) =b.

If we denote by U(b) C GL(D(Y)) [%] the unipotent subgroup attached to a nilpotent Lie subalgebra

b C Lie(GL(]D)(Y)))[%]. Conjecture 6.4.2 is then saying that G(Mz+)) = U(b).

Example 6.4.3. Let the notation be as in §1.3.1 and consider a central leaf C' lying in a Newton
stratum associated to a non-central cocharacter v,. Take a point x € C and suppose that the
associated p-divisible group Y is completely slope divisible (every Newton stratum admits such a
leaf). If b := ]D)(?-[g’o), then Z(b") C Defus(Y) can be identified with C/* C Defgus(Y). In this
case, by [vH24, Cor. 3.3.5]'%, the unipotent radical of the monodromy group G(M¢) is isomorphic
to Uy, = U(b). Thanks to Theorem 5.4.4, we deduce that U(b) is indeed the monodromy group of
M over Z(b™).

As a special case, if YV is of height A and dimension d, then Defg,s(Y) can be realised as the
formal neighborhood of a central leaf in a PEL type unitary Shimura variety of signature (h —d, d)
associated to an imaginary quadratic field E in which p splits. In particular, we know that the
monodromy group of M over Defg,s(Y") is isomorphic to the unipotent group corresponding to the
nilpotent Lie algebra D(H%)[%] = ay.

6.5. Boundedness of the monodromy. In this section we will prove a containment of Con-
jecture 6.4.2. Let Y be a completely slope divisible p-divisible group over F, and let Y be the
universal p-divisible group over the sustained deformation space Defg,s(Y). Let a™ = D(HS,) be
the Dieudonné-Lie algebra associated to the internal-Hom p-divisible group of Y and let b C a be
a Dieudonné-Lie @p—subalgebra with associated strongly Tate-linear subspace Z(b") C Defgys(Y).
Write M = D(X )[}D] for the isocrystal over Defg,s(Y') coming from the Dieudonné module of Y.
Theorem 6.5.1 ([DvH22, Thm. 6.1.1]). There is a natural closed immersion G(Mz+y) — U(b).
In the proof we make use of the Cartier—Witt stacks of Drinfeld [Dri20] and Bhatt-Lurie [BL22]
associated to quasi-syntomic schemes of characteristic p. Given such a scheme X, there is a p-
adic formal stack X , the prismatisation of X, such that coherent crystals on X are the same as
coherent sheaves on X .

12The statement of [vH24, Cor. 3.3.5] contains the assumption that [ibid., Hyp. 2.3.1] holds. This is true for us
because K, is hyperspecial, see [ibid. 2.3.2].
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Consider the Aut(Y')-torsor

(6.3) Isom(Y, Ypet, . (v)) — Defsus(Y).

The locally free crystal M™ = ID()) defines a vector bundle VT over the prismatisation Defus(Y)
This vector bundle has an associated frame bundle which we will write suggestively as

(6.4) Isom(VT, D(Y)Defsus(Y) ).

If we apply the prismatisation functor to the map (6.3), we get a morphism
Isom(y7 YDefsus(Y)) — Defsus(Y> )

which is a torsor under the p-adic formal group® Aut(Y) . Dieudonné theory gives us a homo-
morphism of group schemes over Spf(Z,)

(6.5) Aut(Y) — Aut(D(Y))
and a morphism

Tsom(Y, Yper,,.v) — Isom(VE.D(Y)per ) ):

which is Aut(Y) -equivariant via the homomorphism (6.5) (see [DvH22, §6.3.4] for more de-
tails). The right hand side roughly speaking parametrises all isomorphisms between WVt and
D(Y)Defsus () while the left hand side parametrises those isomorphisms that are compatible with
the F-structures.

By construction, after pulling back to Z(b™) the torsor (6.3) has a reduction to a II(b™1)-torsor.
Feeding this fact into the prismatisation machinery gives us a reduction of the torsor (6.4) to a
U(b™)-torsor. If we apply the Tannakian perspective on torsors and invert p, then this exactly
gives us a closed immersion

G(MZ(b+)) — U(b),

which is exactly what we wanted to prove.

Remark 6.5.2. Note that the morphism (6.5), constructed in [DvH22, §6.3.3], corresponds in
practice to the choice of a Zp—conjugation class of matrices with coefficients in Acyis(R), where
R :=T(Aut(Y),0). We wonder whether the entries of these matrices can be related to other con-
structions of p-adic periods of Y. More in general, under integrability assumptions, we constructed
morphisms

(") — Aut(D(Y)).

A better understanding of this kind of representations of II(b™) and their relation with the isocrys-
tal Mzp+) might lead to the resolution of Conjecture 6.4.2.

L3gince Aut(Y) is grsp this is a formal group and not simply a formal group stack.
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7. MONODROMY OVER FINITE FIELDS AND FLAT TATE CONJECTURE

7.1. An arithmetic version of the parabolicity conjecture. Let X be a smooth connected
variety over F,» with a rational point x. In this case, the fibre functor w, : Isoc(X) — Vecq,.
induces a Qpn-linear fibre functor for the Qpn-linear Tannakian category w, : F"-Isoc(X) —
Vecg ., .

P

Definition 7.1.1. For (M, ®x) € F"-Isoc(X) (resp. (MT,CDjM) € F"-Isoc(X)), we write
G(M, D, z) (resp. G(MT, @j\/l,x)) for the algebraic group of automorphisms of the restriction
of wy to (M, ®pq) (resp. (Mﬂ@h)). The group G(M', &1 z) coincides with the arithmetic
monodromy group of (M, @j\/‘) defined in [D’Ad20, Def. 3.2.4].

By [AD22, Prop. 2.2.4], for every overconvergent F"-isocrystal (M, @j\/[) over X, we have as in
Proposition 4.2.9 the following commutative diagram of QQ,»-linear algebraic groups

1 —— GM,z2) —— GIM, dpr,7) —— GM, D, ) —— 1

(7.1) j j l

1 —— GMH ) —— GMT, 8l 2) —— GMtE 8l )t —— 1
where the rows are exact. The groups on the right are the Tannaka groups of the category of con-
stant objects in (M, ® () and (M, CIJL) We write G for G(MT, (I)TM,ZC) and H for G(M, Py, ).
The slope filtration of M, defines a quasi-cocharacter X : GH>® - G(MT, o' ,x). Write Pg(A\) C G
for the stabiliser of the slope filtration.
Theorem 7.1.2. If (M, ® ) has constant slopes, then H = Pg(\). Moreover, if (./\/lT,CP}LM) 18
semi-simple, H is a parabolic subgroup of G.

Proof. This follows from Theorem 4.3.2 by arguing as in Proposition 4.4.2. O

Suppose that (M, ®, ) has constant slopes. If we write (N, ®yr) for Grg, (M, Prq), there is a
functor (M, @) — (N, Ppr) sending (M, P ry) to Grg, (M, @ ). This induces the following
commutative diagram with exact rows

1 —— GW,z2) —— GN,Ppr,2) —— GN,Pp, )" —— 1

(7.2) j j l:

1 —— GM,z) —— GM, P, 1) —— GM, Ppq,2)S" —— 1.

Even in this case, the natural morphism G(N, @7, )t — G(M, ® oq, 2)°* is an isomorphism since
the inclusion (N, ®pr) — (M, P ) provides an inverse map.

Proposition 7.1.3. The subgroup G(N, ®xr,z) C Pg(N) is equal to Zg(N), the centraliser of the
image of \.

Proof. By construction, the subgroup G(N,®xr, x) is in Zg(A). On the other hand, by Cheval-
ley’s theorem, there exists an F"-isocrystal (M’ , @) € (M, Prq) and a subobject (£, ®r) C
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Grg, (M’, ® ) of rank 1 such that G(N, ®pr, z) is the stabiliser of L := w, (L) C w,(M') =: V.
Since (£, ®,) has rank 1, it is contained as F"-isocrystal in the image of the quotient

T SZ‘(M/) — Si(M/)/SZ‘_1(MI)
for some i. Write (L, ®s) C (M, ®prp) for m (L, P) and L C V for its fibre at 2. If s is the

slope of (£,®,) and V¥ C V is the subspace of slope s, then L = LN V*. We deduce that Zg()\)
stabilises L, which gives the desired result. ([l

Corollary 7.1.4. The algebraic group G(N, ®xr,x)° contains a Cartan subgroup of G(MT, @jw x)°.

Proof. If T'is a maximal torus of G(MT, @j\/[, x)° containing the image of A, the centraliser of 7" in
G(MT, @L, x) is contained in Zg(\) = G(N, P, ). This yields the desired result. O

As a result, we deduce the following semi-simplicity result.

Theorem 7.1.5. Let X be a smooth variety over a finite field Fpn and f : A — X an abelian
scheme with constant slopes. If (M, ®rq) is the F-isocrystal lecris*OA,cri57 the induced F'-isocrystal
(N, @p) := Grg, (M, Prq) is semi-simple. In particular, leét*% is a semi-simple lisse Qp,-sheaf
over X.

Proof. By étale descent we may assume that X is connected and admits a rational point z. We
may also replace ® ¢ with its n-th power. By [EV24], the F"-isocrystal (M, ® ) is t-extendable
and, by [D’Ad20, Cor. 3.5.2.(ii)], the monodromy group G(MT, z) is a reductive group (note that
(MT, CI)I\/I) is pure by the Riemann Hypothesis for abelian varieties). On the other hand, since
the action of the p"-th power Frobenius on the crystalline cohomology groups of A, is semi-simple
(this Frobenius is in the centre of End(A4,)), we get that G(M, <I>j\/l, x)% is a reductive group. We
deduce by (7.1) that G(MT,CI)}LM,x) is reductive (see also [P4l22, Thm. 1.2] for a different proof
over curves). By Proposition 7.1.3, the group G(N, @, x) is the centraliser of X in G(M, @y, x),
thus by [Bor91, Cor. 11.12] it is reductive. This shows that (N, @) is semi-simple.

To prove that R!fs.Q, is semi-simple it is enough to prove that the associated unit-root F-

isocrystal (V, ®y) is semi-simple. This F-isocrystal coincides with the crystalline Dieudonné module
of the p-divisible group A[p>°]¢*. By [BBM82, Thm. 2.5.6.(ii)], the F-isocrystal (M, ®,,) is instead
the crystalline Dieudonné module of A[p], thus (V, ®y) is the minimal slope sub-F-isocrystal of
(M, ® ). This concludes the proof. O

7.2. Applications to abelian varieties. Before the resolution of the parabolicity conjecture, in
[AD22], we used the theory of Frobenius tori developed in [D’Ad20] to prove that G(M,x) C
G(MT,2) contained a maximal torus. We used this weaker form of the conjecture to prove a
finiteness result for the perfect torsion points of an abelian variety, giving a positive answer to a
question by Esnault.

Theorem 7.2.1 ([AD22, Thm. 5.1.1]). Let k be an algebraic closure of a finite field and let E/k
be a finitely generated field extension. For every abelian variety A over E such that Trg,(A) = 0,

the group A(EP™) o is finite.

Thanks to the full parabolicity conjecture, we then proved the following related result as well.
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Theorem 7.2.2 ([D’Ad23, Thm. 1.1.3]). Let E/F, be a finitely generated field extension and let
A be an abelian variety over E. The group A(EP)[p™>] is finite in the following two cases.

(i) If End(A) ®z Qy is a division algebra.

(ii) If End(A) ®z Q does not have any factors of Albert’s type IV.

This theorem enriches the list of known results on the finiteness of separable p-torsion points of
abelian varieties (see [Vol95] and [R6s20]). It is worth mentioning that abelian varieties with finite
separable p-torsion play an important role in the theory of Brauer—Manin obstructions in positive
characteristic (see [PV10]).

As a further consequence of the parabolicity conjecture Ambrosi proved the following result.

Theorem 7.2.3 ([Amb23a]). Let E/F, be a finitely generated field extension and let A be a simple
abelian variety over E such that A(E) @7 Q # 0. The following statements are true.

(i) A(EPeT) is finitely generated if and only if there are no idempotents 0 # e € End(A4) @7 Q,
such that e(A[p>]¢) = 0.

(ii) A is of positive p-rank if and only it the infinitely p-divisible points of A(FE) are torsion
points.

7.3. Flat Tate conjecture. Let X be a smooth projective variety over a finitely generated field
k of characteristic p with field of constants x (defined as the biggest perfect subfield of k). The
original version of the Tate conjecture was formulated by Tate using ¢-adic étale cohomology. For

a natural number 7 > 0 it has the following form'?.

Conjecture 7.3.1 (Tatey(X,r)). The cycle class map
CH"(X)g, = HE (X5, Qe(r)™
18 surjective.

If r = 1 this conjecture is independent of £ and it is equivalent to the finiteness of the prime-to-p
part of the Brauer group of X (see [Tat65] for k finite). When r = 1 the conjecture is known, for
example, when X is an abelian variety, [Tat66], or a K3 surface.

There is a variant of this conjecture for crystalline cohomology. By [Morl9, Prop. 3.2], for every
r the cohomology group HZ: (X )g, can be naturally upgraded to an F-isocrystal over k, thus it

cris
is endowed with a topologically p-nilpotent connection V and a Frobenius structure. The Tate
conjecture in this case has the following form.

Conjecture 7.3.2 (Tateqis(X,7)). The cycle class map
v V=0,p=p"
CH' (X)g, & HZ,(X)"9~

18 surjective.

14Strictly speaking, Tate formulated the conjecture only in codimension 1, thus for » = 1.
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Pal in [P4l22, Def. 5.3] formulated a variant of the Tate conjecture using rigid cohomology. Because
of the knowledge of rigid cohomology at the time, he had to assume the transcendence degree of
k to be (at most) one. He first constructed in [ibid., (5.12.2)], using the higher direct image of
rigid cohomology of spreading outs, an F-crystal Hfig(X ) over k. Then in [ibid., Prop. 5.19] he
constructed cycle class maps

CH"(X)q, = Hi, (X).
His constructions can be now generalised to higher transcendence degree thanks to [EV24]. We can
then consider the following conjecture

Conjecture 7.3.3 (Tateyg(X,7)). The cycle class map

CH"(X)g, == Hip(X)?="

18 surjective.

Thanks to Theorem 3.3.4, we can prove that the crystalline and rigid Tate conjectures are equiva-
lent.

Proposition 7.3.4. For every smooth projective variety X over k and every r > 0, the conjectures
Tatecis(X, ) and Taterig(X,r) are equivalent.

Proof. Let f: X — S a smooth projective spreading out of X, with S a smooth connected scheme
over a finite field with generic fibre k. By [Mor19, Prop. 3.2], the higher direct image R*" feis«Ox. ..
is an F-isocrystal. By Theorem 3.3.4, we deduce that

H([I)I‘iS(S7 RQchris*OXcris) = H(?IZS('X)EPZO'
The result then follows from Kedlaya’s full faithfulness, [Ked04b]. O

In codimension 1, P4l proved also that the rigid Tate conjecture and the ¢-adic étale Tate conjecture
are equivalent as well.

Proposition 7.3.5 ([P4l22, Prop. 6.6]). For every smooth projective variety X over k, the con-
jectures Tate,(X, 1) and Tateyig(X,1) are equivalent.

Both the crystalline and rigid Tate conjectures do not have clear relations with the p-primary
torsion of the Brauer group. The Kummer exact sequence gives rather a comparison between the
p-torsion of the Brauer with the fppf cohomology of p,». More precisely, we have the following
exact sequence

0 — Pic(X)/p" = Hp, oo (X, ppn) — Br(X)[p"] = 0.
The first result on the relation between Tatey(X, 1) and the finiteness of the p-primary torsion of
the Brauer was obtained by Milne.

Theorem 7.3.6 ([Mil75]). If X is a smooth projective surface over a finite field such that Tate,(X, 1)
is true, then Br(X)[p™] is finite.

Ulmer in [Ulm14, §7.3.1] considered the following naive p-adic analogue of Tatey(X, 1) which involves
the fppf cohomology of fipn.
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Conjecture 7.3.7 (Tateg)glfl(X, 1)). The cycle class map

. C 2 T
Pic(X)g, % Hau(Xi Qpl(1)>
18 surjective.
Nonetheless, we noticed that Ulmer’s conjecture is false in general.

Proposition 7.3.8 ([D’Ad24a, Cor. 6.7]). For every abelian variety B over a finitely generated

field k with End(B) = Z, conjecture Tateg}g?(B x B,1) is false.

7.3.1. Relation with the parabolicity conjecture. Let us try to see more in depth why Tateg)lf)?(X , 1)

can not be true in general. Combining the comparison between crystalline and fppf cohomology of
Qp(1), [[I179], Thm. I1.5.14], with Theorem 4.1.1 and Theorem 5.2.1, we deduce that the geometric
monodromy group of the Galois action on prpf(X,;, Qp(1)) is contained in a Levi subgroup L of

the monodromy group’ P = G(H2? (X )g,)- At the same time, P is the parabolic subgroup of

G = G(R? frig=Oux,;, ) associated to the slope filtration and by the theory of weights the latter
is a reductive group. Thus, there is the extra obstruction given by the (big) unipotent radical

of P = Ry(P) x L, which is not captured by Tateg)g?(X ,1). Indeed, note that for every G-

representation V', we have
VG — VP — (VRu(P))L g VL
and, in general, the last containment is not an equality.

To overcome this problem we looked instead at the Q,-vector subspace

(@H?ppxxg,upn)’f) HERE T

where
2 kE._: 2 2
prpf(XE? [Lpn) = 1m (prpf(X7 /’LP") - prpf(XEﬂ /’LP")) :
The definition of these groups was inspired by the previous definition of the transcendental Brauer
group of a variety. We expected that the following property was true.

Conjecture 7.3.9 (Tategps(X,1)). The cycle class map

1
. . k
Pic(X)q, SN (@ngpf(Xk,upn) ) [p]
n
18 surjective.
As an evidence of this claim we proved the conjecture for abelian varieties.

Theorem 7.3.10 ([D’Ad24a]). If X is an abelian variety over k, the conjecture Tatepps(X,1) is
true.

15We consider here monodromy groups of isocrystals without Frobenius structure.
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We deduced the result by using Tatecis(A x A, 1) proved by de Jong, [deJ98, Thm. 2.6]. The main
issue that we had to overcome was the lack of a good comparison between crystalline and fppf
cohomology of Z,(1) over k. In the special case of abelian varieties, we obtain such a comparison
in [D’Ad24a, §4] by using the p-divisible group of A. This result was then extended by Lazda and
Skorobogatov to K3 surfaces using the Kuga—Satake construction, [LS24].

Note that by Lemma [D’Ad24a, Lem. 3.3], we have a containment
Hfzppf(XE7 Mpn)k C Hg)pf<k7 R2ffppf*ﬂp”)

for every n > 1. In light of this, we can also consider the following stronger form of Tateg,pe(X, 1).

Conjecture 7.3.11 (Tateﬁg;f(X, 1)). The cycle class map

Pic(X)q, = Hippe(k, B fippteQp(1))

18 surjective.

We expected that both Conjecture 7.3.9 and Conjecture 7.3.11 were equivalent to the ¢-adic Tate
conjecture for divisors. This was proved recently by Li and Qin.

Theorem 7.3.12 ([LQ24]). For every smooth projective variety X over k, both Tategpe(X,1) and

Tate?lg;f(X, 1) are equivalent to Tate,(X,1).

7.4. The p-primary torsion of the Brauer group. If k is a finitely generated field extension of

[F,, one can not expect Br(A) to be finite. Indeed, when k is infinite, Br(k) is an infinite group and

it injects into Br(A). Even Br(A)/Br(k) might be infinite since it contains a subgroup isomorphic

to Hy (k,Picy/x). On the other hand, if Br(Ag,)¥ is the image of the natural morphism Br(4) —
1

Br(Ay,), where kg is a separable closure of k in an algebraic closure k, the group Br(Aks)k[ﬁ] is

finite by [CS21, Thm. 16.2.3] or [CHT23, Cor. 1.4]. In general, the p-torsion of Br(4y,)* is not
finite (see [D’Ad24a, Prop. 5.4]). Nonetheless, we proved the following finiteness result.

Theorem 7.4.1 ([D’Ad24a, Thm. 1.1]). Let A be an abelian variety over a finitely generated field k
of characteristic p > 0. The transcendental Brauer group Br(Aks)k s a direct sum of a finite group
and a finite exponent p-group. In addition, if the Witt vector cohomology group H?(Ay, WOa,) is
a finite W (k)-module, then Br(Ay,)* is finite.

The condition on H?(Az, WO A;) 18 necessary to remove the “supersingular pathologies” as the one
of our counterexample in [D’Ad24a, Prop. 5.4]. It is satisfied, for example, when the p-rank of A
is g or g — 1, where g is the dimension of A (see [IlI83, Cor. 6.3.16]). If the formal Brauer group of
Ay, denoted by ﬁr(AE), is a formal Lie group, then by [AM77, Cor. 11.4.4] the cohomology group
H?(A;;,WOy,) is a finite W (k)-module if and only if Br(Az) has finite height. Note also that the
formal Brauer group of abelian surfaces is always a formal Lie group by [ibid., Cor. 11.2.12]. As
a consequence of Theorem 4.1.4, we deduced that the subgroup of Galois-fixed points of Br(Ag,),
denoted by Br(Ayg,)'*, has finite exponent as well, [D’Ad24a, Cor. 5.3]. This is a variant of [SZ0S,
Ques. 2] for abelian varieties.

On the other hand, as a consequence of Proposition 7.3.8, we deduced that in general
T,(Br(Ap))"™* # 0.
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These “exceptional classes” in T,(Br(Az))'* are naturally related to the specialisation morphism
of the Néron—Severi group. We recall the following theorem, which was proved in [And96, Thm.
5.2] in characteristic 0 and in [Amb23b] and [Chrl8] in positive characteristic.

Theorem 7.4.2 (André, Ambrosi, Christensen). Let K be an algebraically closed field which is
not an algebraic extension of a finite field, X a finite type K-scheme, and Y — X a smooth and
proper morphism. For every geometric point 7 of X there is an x € X (K) such that rkz(NS(V5)) =

rkz(NS():)).-

As it is well-known, the theorem is false when K = F, (see [MP12, Rmk. 1.12]). We proved that,
in the known counterexamples, the elements in T,(Br(Az))''* explain the failure of Theorem 7.4.2
when K = F,. More precisely, we proved the following result.

Theorem 7.4.3 ([D’Ad24a, Thm. 1.4]). Let X be an integral normal scheme of finite type over
[F,, with generic point n = Spec(k) and let f : A — X be an abelian scheme over X with constant
slopes. For every closed point x = Spec(k) of X we have

rkZ(NS(.Af)F”) — rkZ(NS(Aﬁ)F’“) > rkz, (Tp(Br(Aﬁ))Fk).

Remark 7.4.4. In the inequality, the left term is “motivic”, while the right term comes from some
p-adic object which, as far as we know, has no f-adic analogue.

7.4.1. We end this section with an interpretation of Theorem 7.4.3 that uses the point of view
of §7.3.1. In this case, we replace the monodromy groups considered there with their arithmetic
counterparts, as in §7.1. Thanks to the crystalline Tate conjecture for abelian varieties, we can
then read the inequality of Theorem 7.4.3 as the inequality

dim(VT) — dim(V?) > dim(V1) — dim(V?),

where V' is ngis(Ax)[%] and T, C L is the monodromy group of the Frobenius at . We wonder
whether in Theorem 7.4.3 we can always find a point = such that the inequality becomes an equality.
This corresponds to finding a Frobenius torus T} such that V7* = V. This would prove that the

group T, (Br(Ajz))'* is the “only obstruction” to Theorem 7.4.2 when K = F,.
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