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1. Introduction

Dans cette thèse, nous explorons les avancées récentes dans l’étude de la filtration par les pentes
des F -isocristaux, en nous concentrant particulièrement sur la conjecture de parabolicité et son
amélioration locale. Ces résultats constituent un nouveau lien entre les motifs et la géométrie p-
adique. Nous appliquons spécifiquement ces outils pour étudier la géométrie des variétés de Shimura
en caractéristique positive.

1.1. Faisceaux lisses et F -isocristaux. Soient p et ℓ deux nombres premiers distincts. Une
grande partie de la géométrie arithmétique en caractéristique p repose sur la cohomologie étale
ℓ-adique, où les faisceaux lisses jouent un rôle central. Cette théorie a été essentielle pour prouver
des résultats majeurs, comme l’hypothèse de Riemann sur les corps finis. La variante p-adique des
faisceaux lisses est la catégorie des F -isocristaux.

Contrairement aux faisceaux lisses ℓ-adiques, les F -isocristaux se présentent sous différentes formes,
dont les deux principales catégories sont les F -isocristaux “classiques” de Grothendieck et les F -
isocristaux surconvergents de Berthelot (voir §2 ou [Ked22] pour un aperçu). Ces derniers se sont
avérés être l’analogue “correct” des systèmes locaux ℓ-adiques. Les F -isocristaux surconvergents
possèdent des groupes de cohomologie de dimension finie, une théorie des poids [Ked06b], et ils
satisfont une correspondance de Langlands [Abe18]. En combinant la correspondance d’Abe avec la
correspondance de Langlands classique pour GLr sur un corps de fonctions, prouvée par Drinfeld et
L. Lafforgue, on obtient, sur les courbes lisses sur un corps fini, une correspondance entre les fais-
ceaux lisses ℓ-adiques semi-simples et les F -isocristaux surconvergents semi-simples. L’assignation
préserve les traces du Frobenius aux points fermés. Deux objets ainsi reliés sont appelés compagnons
(voir [D’Ad20] pour plus de détails).

Les F -isocristaux de Grothendieck présentent des comportements sensiblement différents. Soit X
une variété lisse sur un corps parfait k de caractéristique p. Comme démontré par Kedlaya dans
[Ked04b], la catégorie des F -isocristaux surconvergents sur X admet un foncteur pleinement fidèle

α : F-Isoc†(X)→ F-Isoc(X).

Nous disons que (M,ΦM) ∈ F-Isoc(X) est †-prolongeable s’il est dans l’image essentielle de α et
nous écrivons (M†,ΦM†) pour le F -isocristal surconvergent associé. Pour (M†,ΦM†) ∈ F-Isoc†(X),
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l’image dans F-Isoc(X) acquiert en général plus de sous-quotients. Par exemple, si (M,ΦM) a des
pentes constantes, il admet une (unique) filtration dans F-Isoc(X)

0 = S0(M) ⊊ S1(M) ⊊ · · · ⊊ Sm(M) =M,

où, pour chaque i ≥ 0, le quotient Si(M)/Si−1(M) est de pente qi ∈ Q et la suite {qi}1≤i≤m

est croissante. Cette filtration est appelée filtration par les pentes (voir §3, [And09]). En général,
cette filtration ne se scinde pas et les sous-objets ne sont pas †-prolongeables. Dans les situations
géométriques, le premier niveau de la filtration correspond à la cohomologie étale p-adique, qui
constitue seulement une partie de la cohomologie cristalline et rigide.

1.2. La conjecture de parabolicité de Crew. Les catégories présentées ci-dessus sont tan-
nakiennes, donc équivalentes (éventuellement après extension du corps de base) à la catégorie des
représentations linéaires d’un groupe pro-algébrique. L’image de la représentation associée à un
objet est ce que l’on appelle le groupe de monodromie (algébrique) de l’objet. Dans le cas des
systèmes locaux ℓ-adiques, les groupes de monodromie ont déjà été largement étudiés. Pour les
catégories des F -isocristaux, beaucoup moins de choses étaient connues. Dans le cas †-prolongeable,
une caractéristique intéressante est l’interaction entre le groupe de monodromie comme F -isocristal
et F -isocristal surconvergent. Ce phénomène n’a pas d’analogue ℓ-adique.

Soit (M,ΦM) un F -isocristal †-prolongeable sur X qui admet la filtration par les pentes. Notons
G(M) et G(M†) les groupes de monodromie associés. Dans [D’Ad23], nous avons prouvé le résultat
suivant (voir §4).

Theorem 1.2.1 (Conjecture de parabolicité de Crew, Théorème 4.1.1). Le groupe G(M) est le
sous-groupe de G(M†) qui stabilise la filtration par les pentes. De plus, lorsqueM† est semi-simple,
G(M) est un sous-groupe parabolique de G(M†).

En combinant ce théorème avec le résultat principal de [D’Ad20], on peut calculer le groupe G(M)
dans de nombreuses situations géométriques. Comme nous le verrons dans ce texte, les applications
les plus intéressantes obtenues jusqu’à présent sont celles où M est l’isocristal universel de la
réduction modulo p d’une variété de Shimura.

Dans [DvH22], nous avons prouvé une sorte d’amélioration du Théorème 1.2.1, que nous présentons

en §5. Soit x un point fermé de X et soit X/x la complétion formelle de X en x. Nous écrivons
M/x pour la restriction deM à X/x.

Theorem 1.2.2 (D’A–van Hoften, Théorème 5.4.4). Si (M,ΦM) provient d’un isocristal surcon-
vergent semi-simple muni d’une structure de Frobenius avec polygone de Newton constant, alors

G(M/x) = Ru(G(M)).

Notez que l’énoncé du Théorème 5.4.4 est très éloigné du comportement ℓ-adique. En effet, le groupe
fondamental étale géométrique de X/x est trivial, ce qui implique que les faisceaux lisses ℓ-adiques
sur X/x ont une monodromie géométrique triviale. Dans la §5.1, nous expliquerons pourquoi le
Théorème 1.2.2 doit être considéré comme une amélioration du Théorème 1.2.1. En général, nous
nous attendons que la forme plus forte suivante du Théorème 1.2.1 soit vraie.

Conjecture 1.2.3 (D’A–van Hoften). Si (M,ΦM) admet la filtration par les pentes, alors G(M/x)
est le noyau de G(M) ↠ G(N ), où N est l’objet gradué associé à la filtration par les pentes.
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1.3. Conjecture d’orbite de Hecke. Comme application de la conjecture de parabolicité et du
Théorème 1.2.2, nous avons résolu avec van Hoften une conjecture proposée par Chai et Oort sur
le comportement des orbites de Hecke des variétés de Shimura, [DvH22]. Rappelons la conjecture.

Soit p un nombre premier et g un entier positif. Le Problème 15 de la liste de problèmes ouverts
de Oort en géométrie algébrique en 1995, [Oor19], était la conjecture suivante.

Conjecture 1.3.1. Soit x = (Ax, λ) un point Fp de l’espace de modules Ag des variétés abéliennes

principalement polarisées de dimension g sur Fp. L’orbite de Hecke de x, constituée de tous les

points y ∈ Ag(Fp) paramétrant des variétés abéliennes principalement polarisées reliées à (Ax, λ)
par des isogénies symplectiques, est dense pour la topologie de Zariski dans le stratum de Newton
de Ag contenant x.

Il existe une version raffinée de la Conjecture 1.3.1, également due à Oort, qui considère l’orbite de
Hecke premier à p de x, constituée de tous les y ∈ Ag(Fp) reliés à x par des isogénies symplectiques
premier à p. Dans ce cas, le groupe p-divisible quasi-polarisé (Ax[p

∞], λ) est constant sur les orbites
de Hecke premier à p (non seulement constant à isogénie près). Par conséquent, l’orbite de Hecke
premier à p de x est contenue dans la feuille centrale

C(x) =
{
y ∈ Ag(Fp) | Ay[p

∞] ≃λ Ax[p
∞]
}
,

où ≃λ désigne un isomorphisme symplectique. Oort a prouvé dans [Oor04] que C(x) est une sous-
variété fermée et lisse du stratum de Newton de Ag contenant x. Il a également conjecturé que
l’orbite de Hecke premier à p de x était dense pour la topologie de Zariski dans la feuille centrale
C(x). Cette conjecture est connue sous le nom de conjecture d’orbite de Hecke pour Ag. Grâce à
la formule de produit de Mantovan–Oort, la conjecture d’orbite de Hecke implique la Conjecture
1.3.1.

Les feuilles centrales et les orbites de Hecke premier à p peuvent également être définies pour les
fibres spéciales des variétés de Shimura de type Hodge en des premiers de bonne réduction grâce
aux travaux de Hamacher et Kim. La conjecture d’orbite de Hecke pour les variétés de Shimura
de type Hodge prédit alors que les orbites de Hecke premier à p des points sont denses pour la
topologie de Zariski dans les feuilles centrales les contenant (voir [KS23, Ques. 8.2.1] et [Cha06b,
Conj. 3.2]). La conjecture d’orbite de Hecke se divise naturellement en une partie discrète et une
partie continue. La partie discrète affirme que l’orbite de Hecke premier à p de x intersecte chaque
composante connexe de C(x), tandis que la partie continue affirme que l’adhérence de Zariski de
l’orbite de Hecke premier à p de x est de la même dimension que C(x). La partie discrète de la
conjecture est le Théorème C de [KS23] (voir [vHX21] pour des résultats connexes).

1.3.1. Soit (G,X) un datum de Shimura de type Hodge avec le corps réflexe E, et supposons pour
simplifier que Gad est Q-simple. Soit p > 2 un nombre premier tel que G = G⊗Qp est quasi-déployé
et déployé sur une extension non ramifiée, soit Up ⊆ G(Qp) un sous-groupe hyperspécial, et soit
Up ⊆ G(Ap

f ) un sous-groupe ouvert compact suffisamment petit. Choisissons une place v de E

divisant p et posons E = Ev. Soit ShU (G,X) le modèle canonique de variété de Shimura pour
(G,X) de niveau U := UpUp sur E. Soit SU (G,X) le modèle intégral canonique sur OE construit
dans [Kis17], et soit ShG,U sa fibre spéciale géométrique. Soit C ⊆ ShG,U une feuille centrale telle
que construite dans [Ham19] (cf. [Kim19]).
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Theorem 1.3.2 ([DvH22]). Si p ̸= 2 et Z ⊆ C est une sous-variété fermée réduite non vide qui
est stable sous les opérateurs de Hecke premier à p, alors Z = C.

Lorsque ShG,U est une variété modulaire de Siegel, ce résultat est dû à Chai–Oort et apparâıtra
dans leur livre, [CO24]. Leurs preuves ne se généralisent pas aux variétés de Shimura plus générales,
car elles reposent sur l’existence de points hypersymétriques dans les strates de Newton, ce qui est
généralement faux pour les variétés de Shimura de type Hodge. De plus, leur preuve de la partie
continue de la conjecture repose sur le fait que tout point x ∈ Ag(Fp) est contenu dans une grande
variété modulaire de Hilbert, et ils utilisent les travaux de Chai–Oort–Yu sur la conjecture d’orbite
de Hecke pour les variétés modulaires de Hilbert en des premiers (éventuellement ramifiés). Il existe
de nombreux autres résultats partiels, par exemple pour les orbites de Hecke premier à p des points
hypersymétriques dans le cas PEL, [Xia20], ou pour les orbites de Hecke premier à p des points
µ-ordinaires, [Cha06a], [Sha16], [MST22], [Zho23], [vH24].

Nous avons également prouvé que les classes d’isogénie sont denses dans les strates de Newton qui
les contiennent, voir [DvH22, Thm. 8.4.1]. De plus, nous avons obtenu des résultats sur les orbites
de Hecke ℓ-adiques pour les premiers ℓ ̸= p généralisant les travaux de Chai, [Cha11], dans le cas
de Siegel, voir [DvH22, Thm. 8.6.1].

Remark 1.3.3. L’hypothèse selon laquelle Gad est Q-simple peut être assouplie au prix d’introduire
plus de notations, voir [DvH22, Thm. 8.3.2] pour un énoncé précis. L’hypothèse p > 2 est héritée
des travaux de Kim [Kim19], et n’est pas nécessaire pour les variétés modulaires de Siegel.

Remark 1.3.4. Bragg–Yang ont prouvé un critère de bonne réduction potentielle pour les surfaces
K3, voir [BY23, Thm. 8.10], sous réserve de la conjecture d’orbite de Hecke pour certaines variétés
de Shimura orthogonales, voir [ibid., Conj. 8.2]. Dans [DvH22, §8.5], nous avons expliqué que nos
résultats peuvent être utilisés pour prouver cette conjecture pour p > 2.

1.3.2. Pour résoudre la conjecture d’orbite de Hecke, nous avons principalement exploité une
stratégie proposée par Chai et Oort. Grâce à [KS23], pour prouver la conjecture, il suffisait de
montrer que la dimension de Z est maximale. Ainsi, nous avons pu examiner le voisinage formel
Z/x par rapport à un certain point fermé lisse x ∈ Z. Sur ce schéma formel, nous avons combiné
[vH24, Cor. 3.3.3] et le Théorème 1.2.2 pour prouver que le groupe de monodromie de l’isocristal
universel F est maximal1. Pour en déduire qu’une grande monodromie garantit un grand voisinage
formel, nous avons combiné un résultat de rigidité de Chai–Oort sur les sous-schémas formels
fortement Tate-linéaires, [CO22], et une borne de monodromie obtenue en utilisant les champs de
Cartier–Witt (Théorème 6.5.1). Le Théorème 6.5.1 est la “moitié” d’une conjecture que nous avons
formulée sur la détermination des groupes de monodromie pertinents (voir Conjecture 6.4.2).

1.4. Structure de la thèse. Dans la §2, nous présentons de manière historique les principales
théories de cohomologie p-adique en caractéristique positive. Dans la §3, nous rappelons d’abord
la notion de filtration par les pentes des F -isocristaux, puis nous examinons le comportement des
F -isocristaux sur les schémas Frobenius-lisses et expliquons la preuve d’un nouveau résultat de
pleine fidélité pour le foncteur de restriction au point générique (Théorème 3.3.4). Nous l’utilisons

1Notez que [vH24, Cor. 3.3.3] utilise indirectement la correspondance de Langlands en caractéristique positive car

il repose sur [D’Ad20].
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pour prouver un résultat général sur l’existence de la filtration par les pentes (Théorème 3.3.6).
Ensuite, nous rappelons les définitions et théorèmes principaux de la théorie des groupes p-divisibles.
Nous terminons la section en introduisant les anneaux quasi-réguliers sémiparfaits et la notion de
groupes p-divisibles complètement divisibles par les pentes. Dans la §4, nous présentons la preuve
de la conjecture de parabolicité, dans la §5 son amélioration locale, et dans la §6 nous détaillons
comment ces résultats contribuent à résoudre la conjecture d’orbite de Hecke. Dans la §6.2, nous
rappelons la définition des algèbres de Dieudonné–Lie que nous avons utilisées pour définir certaines
coordonnées de Serre–Tate généralisées. Dans la §7, nous passons en revue d’autres applications
de la conjecture de parabolicité. En particulier, dans la §7.3, nous présentons quelques variantes
p-adiques de la conjecture de Tate et sa relation avec la conjecture de parabolicité.

1.5. Remerciements. Je souhaite exprimer ma profonde gratitude à ma directrice de thèse Hélène
Esnault ainsi qu’à mes mentors Matthew Morrow et Peter Scholze, pour leur précieuse orientation
et leur soutien tout au long de mon parcours académique.

Je tiens également à remercier Lie Fu d’avoir accepté le rôle de garant pour cette thèse. Mes sincères
remerciements vont à Yves André, Anna Cadoret, et Nobuo Tsuzuki pour avoir été rapporteurs de
cette thèse et à Daniel Caro pour avoir été examinateur.

Je remercie chaleureusement Pol van Hoften pour la belle collaboration que nous avons partagée
dans la résolution de la conjecture d’orbite de Hecke. Travailler ensemble sur ce problème complexe
a été une expérience intellectuellement stimulante et passionnante, et j’apprécie profondément notre
partenariat.

Je remercie également toutes les personnes de la communauté mathématique avec qui j’ai eu des
discussions éclairantes, telles que Tomoyuki Abe, Emiliano Ambrosi, Yves André, Bhargav Bhatt,
Anna Cadoret, Daniel Caro, Ching-Li Chai, Bruno Chiarellotto, Dustin Clausen, Richard Crew,
Elden Elmanto, Hélène Esnault, Ofer Gabber, Carlo Gasbarri, Luc Illusie, Bruno Kahn, Kiran
Kedlaya, Shane Kelly, Daniel Kriz, Christopher Lazda, Arthur-César Le Bras, Matthew Morrow,
Frans Oort, Mauro Porta, Damian Rössler, Peter Scholze, Atsushi Shiho, Matteo Tamiozzo, Nobuo
Tsuzuki, Olivier Wittenberg, et bien d’autres.

Je remercie l’Institut Max Planck (MPI), l’Institut de mathématiques de Jussieu – Paris Rive
Gauche (IMJ-PRG), et l’Institut de Recherche Mathématique Avancée (IRMA) pour leur chaleureux
accueil lors de mes séjours de recherche. Les environnements stimulants offerts par ces institutions
ont été fondamentaux pour le progrès de mon travail.

Enfin, je remercie chaleureusement pour leur soutien financier l’Institut Max Planck (MPI), la
Fondation Allemande pour la Recherche (DFG), la Commission Européenne, et le Centre National
de la Recherche Scientifique (CNRS). Votre soutien a été essentiel pour mener à bien mes recherches.

2. Review of p-adic cohomology theories

In this section we shall present an historical overview of various p-adic cohomology theories that
have been developed over time.
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2.1. Algebraic de Rham cohomology. Let us first recall the situation over the complex num-
bers. Let X be a smooth algebraic variety over C. One can construct on X a complex of sheaves
of algebraic differential forms

Ω•
X/C := 0→ OX/C

d−→ Ω1
X/C

d−→ Ω2
X/C

d−→ ... .

The algebraic de Rham cohomologyH•
dR(X/C) is defined to be the hypercohomology of the complex

Ω•
X/C as a complex of sheaves for the Zariski topology of X. If X is affine these groups coincide with

the cohomology groups of the complex of global sections of Ω•
X/C. Grothendieck proved that for

smooth varieties, de Rham cohomology computes the singular cohomology of the complex manifold
Xan associated to X. For example, for the affine line A1

C (corresponding to the complex manifold
C), we have that H1

dR(X/C) = 0 since

C[x] ≃ H0(X,OX/C)
d−→ H0(X,Ω1

X/C) ≃ C[x]dx

is surjective.

The construction of the groups H•
dR(X/C) is completely algebraic, thus one can define them for

every smooth algebraic variety over a field k (or more generally for smooth schemes over a base S).
In characteristic 0, this construction works well and the cohomology groups have all the desired
properties. In particular, the cohomology groups are finite-dimensional k-vector spaces. In positive
characteristic one encounters some problems. If A1

Fp
is the affine line over Fp, the Fp-vector space

H1
dR(A1

Fp
/Fp) is infinite-dimensional. The differential forms xp−1dx, x2p−1dx, . . . define an infinite

sequence of linearly independent classes. Even for smooth and proper varieties there are some
undesired phenomena. For example, the dimension of H1

dR(X/k) might be bigger than twice the
dimension of the Picard variety of X.

2.2. Dwork and Monsky–Washnitzer cohomology. A way to overcome the problems of al-
gebraic de Rham cohomology in positive characteristic is to work with lifting of the varieties to
characteristic 0. If k is a perfect field of positive characteristic p, a very convenient way to pass
to characteristic 0 is by considering the ring of Witt-vectors W . This ring is a p-adically complete
discrete valuation ring with residue field k and fraction field K of characteristic 0. The construction
of this ring is functorial in k and it generalises the construction of the ring of p-adic integers Zp,
which is the ring of Witt-vectors of Fp. Even if there are many different ways to lift the equations of
an algebraic variety over k toW , if X is the reduction modulo p of two different smooth and proper
schemes X∞ and X ′

∞ over W , the de Rham cohomology groups H i
dR(X∞/W ) and H i

dR(X
′
∞/W )

are canonically isomorphic. In this case, we also have that the W -module H i
dR(X∞/W ) is finitely

generated.

Dwork was the first one to construct and use p-adic cohomology groups endowed with an action of
the Frobenius for some particular algebraic varieties over k. Many authors, influenced by Dwork’s
ideas, tried to construct an entire cohomology theory for algebraic varieties over perfect fields of
positive characteristic with coefficients in W . One of the first difficulties is that, in general, smooth
and proper varieties over k do not lift to smooth proper schemes over W . If X is smooth and
affine, instead, there is always a formal lift X := Spf(A∞) over Spf(W ), where A∞ is a p-adically
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complete topologically finitely generated and formally smooth W -algebra. Even for this lift one
has a natural de Rham complex

Ω•
X/W := OX/W

d−→ Ω1
X/W

d−→ Ω2
X/W

d−→ ... .

The A∞-module of global sections Γ(Ωi
X/W ) is defined to be the projective limit lim←−Ωi

An/Wn
where

An := A∞/p
n and Wn :=W/pn. One can prove that the cohomology of Ω•

X/W depends only on X,

again, but in this case the cohomology groups are huge. This is already clear for the affine line. If
X := Â1

W is the formal affine line over W , its ring of global sections lim←−n
Wn[x] is isomorphic to the

ring

W ⟨x⟩ :=

{ ∞∑
i=0

aix
i ∈W [[x]]

∣∣∣ vp(ai)→∞ when i→∞

}
.

Therefore, we get the complex

W ⟨x⟩ d−→W ⟨x⟩dx.

In this case, there are lots of undesirable classes. The first type is given by those classes represented
by the differential forms like xip−1dx, which cannot be integrated because p is not invertible. These
differential forms can be integrated after multiplying enough times by p, thus they define torsion

classes of H1. The second type of issue is given by the differential forms like
∑∞

i=0 p
ixp

i−1dx. This

differential form cannot be integrated because the formal integral is given by the series
∑∞

i=0 x
pi+c,

which is not in W ⟨x⟩. In this case, one cannot integrate the differential form even after multiplying

by a big power of p. Note also that the class represented by
∑∞

i=0 p
ixp

i−1dx is infinitely p-divisible,
since for every n ≥ 1 it can be written as(

n−1∑
i=0

pixp
i−1dx

)
+

(
pn

∞∑
i=n

pi−nxp
i−1dx

)
and the first summand is exact, while the second is divisible by pn.

This problem was partially solved by Dwork by replacing W ⟨x⟩ with the ring of overconvergent
series

W ⟨x⟩† :=

{ ∞∑
i=0

aix
i ∈W [[x]]

∣∣∣ (vp(ai)− i
n

)
→∞ for some n > 0 and i→∞

}
.

Geometrically, the ring W ⟨x⟩† is a ring of series such that the p-adic radius of convergence is
strictly bigger than 1, whereas W ⟨x⟩ is a ring of series with p-adic radius equal to 1. After passing

toK⟨x⟩† :=W ⟨x⟩†[1p ], one can easily check thatK⟨x⟩† d−→ K⟨x⟩†dx is surjective, so that the complex

K⟨x⟩† d−→ K⟨x⟩†dx

is quasi-isomorphic to K[0], as it happens over C.

The idea of working with overconvergent series has been used by Monsky–Washnitzer to define
a cohomology theory for smooth affine varieties over k. For a smooth algebra A over k, they
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construct a certain flat W -algebra A†
∞, playing the role of W ⟨x⟩†, such that A†

∞/p ≃ A. They
define H•

MW(Spec(A)/W ) as the cohomology groups of

A† d−→ Ω̃1
A†

∞/W

d−→ Ω̃2
A†

∞/W
→ . . .

with Ω̃i
A†

∞/K
the A†

∞-submodules of Ωi
A†

∞/K
of p-adically continuous differential forms. They

prove that this construction is functorial in A and does not depend on the lift. The groups
H•

MW(Spec(A)/W )[1p ] are finite-dimensional vector space, as proved by Mebkhout in [Meb97].

2.3. Crystalline cohomology. Grothendieck in 1966 introduced crystalline cohomology. His
point of view was quite different from the one of Dwork and Monsky–Washnitzer. Rather than
working explicitly with differential forms, he has constructed the crystalline cohomology groups
using a Grothendieck site, the crystalline site [Gro68]. The idea behind this construction is that,
even if the varieties over k do not have good lifts to characteristic 0, they do lift nicely locally. We
can say that, roughly speaking, the crystalline site contains all these lifts. The name comes from a
fitting similitude Grothendieck found with common crystals.

“A crystal has two characteristic properties: the rigidity, and the faculty to grow in
an adequate neighbourhood. There are crystals of all kind of substances: crystals of
soda, of sulphur, of modules, of rings, of relative schemes etc.”

Let us briefly recall Grothendieck’s construction. If X is a variety over k, he considered the category
Cris(X) of triples (U, T, γ) where U ⊆ X is a Zariski open, U ↪→ T is a nilpotent thickening over
W defined by an ideal sheaf I, and γ is a divided power structure 2 on I such that γn(p) = pn/n!
for every n ≥ 1. The category Cris(X), endowed with its natural Zariski topology, is called the
crystalline site of X (with respect to W ). The category Xcris of sheaves of sets of Cris(X) is a
ringed topos with ring object OXcris , the sheaf that assigns at each triple (U, T, γ) the set of global
sections Γ(T,OT ). The crystalline cohomology groups of X are then defined as H•

cris(X/W ) :=
H•(Xcris,OXcris).

Crystalline cohomology has been developed chiefly by Berthelot and Ogus (see [Ber74] and [BO78])
who proved that the crystalline cohomology groups of smooth and proper varieties are finitely
generated and satisfy Poincaré duality, the Künneth formula, and the Lefschetz trace formula for
Frobenius. Moreover, there is a theory of crystalline Chern classes and cycle classes, developed by
Berthelot–Illusie [BI70] and Gillet–Messing [GM87].

Given a sheaf F on Cris(X) and an object (U, T, γ) ∈ Cris(X), there is a natural way to construct
a Zariski sheaf FT over T . This is defined as FT (W ) := F(U ∩W,W, γ) for every Zariski open
W ⊆ T .

Definition 2.3.1. A crystal over X is a sheaf over Cris(X) satisfying the following two conditions.

(1) For every (U, T, γ) ∈ Cris(X), the sheaf FT is quasi-coherent.

2A divided structure on an ideal I is the datum of map of sets γn : I → I for n ≥ 1 satisfying all the algebraic

relations of the maps γn : (x) → (x) of the ideal (x) ⊆ Q[x] defined by γn(f) = fn/n! for n ≥ 1. It is natural to ask

that I has a divided power structure in order to construct Chern classes of line bundles in crystalline cohomology.
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(2) For every morphism f : (U, T, γ)→ (U ′, T ′, γ′) in Cris(X), the comparison morphism

f∗FT ′ → FT

is an isomorphism.

Crystals are the coefficients of crystalline cohomology. It is often useful to consider also their
rational variant, called isocrystals. As proven by Morrow [Mor19], isocrystals parametrise the
variation of rational crystalline cohomology groups of smooth and proper families of varieties.
In this situation, they carry a natural Frobenius structure, given by the variation of the action
of the Frobenius on the different crystalline cohomology groups. For this reason, for geometric
applications, it is often convenient to work with the category of F -crystals (resp. F -isocrystals),
which are crystals (resp. isocrystals) endowed with a Frobenius structure.

Even if the theory works well for smooth and proper varieties, the problems explained in §2.2 for
open smooth varieties remain unchanged. Indeed, if X lifts to a smooth formal scheme X over W ,
then H•

cris(X/W ) = H•
dR(X/W ). In particular, the cohomology of A1

k is not of finite rank.

2.4. Rigid cohomology. In 1996 Berthelot defined another variant of crystalline cohomology,
called rigid cohomology [Ber96b]. The idea is to embed X Zariski-locally in some smooth formal
schemeP and then consider the de Rham cohomology of a certain decreasing chain of p-adic tubular
neighbourhoods of X in the rigid generic fibre PK . These tubes are chosen in order to avoid those
series which are not overconvergent. The geometric idea behind this construction is that if you have
a manifold M embedded in Rn, every small tubular neighbourhood of M has the same singular
cohomology asM.

The rigid cohomology groups H•
rig(X/K) are vector spaces over K. Berthelot proved that if X is

smooth and proper, then H•
rig(X/K) = H•

cris(X/W )[1p ] and if X is smooth and affine H•
rig(X/K) =

H•
MW(X/W )[1p ]. Thanks to this, he deduced that the rigid cohomology groups (with constant

coefficients) of smooth varieties are finite-dimensional [Ber97]. This result has been extended
to general varieties in [GK02] and [Tsu03]. Rigid cohomology has many desirable properties as
Poincaré duality and the Künneth formula and it also admits a theory of Chern classes and cycle
classes, developed by Petrequin [Pet03].

The natural category of coefficients of rigid cohomology is the category of overconvergent isocrys-
tals. The finiteness of rigid cohomology with coefficients in an overconvergent isocrystal was proven
by Kedlaya in [Ked06a]. In this case, the proof relies on Crew’s local monodromy conjecture, proved
independently by André [And02], Mebkhout [Meb02], and Kedlaya [Ked04a]. Using Crew’s conjec-
ture, Kedlaya proved also a comparison theorem for convergent and overconvergent F -isocrystals,
called Kedlaya’s full faithfulness theorem [Ked04b]. Berthelot’s conjecture, remains the main open
problem in the theory (see [Laz16], [EV24]). It says that the higher direct image of an overconver-
gent F -isocrystal via a smooth and proper morphism of smooth varieties is again an overconvergent
F -isocrystal.

A variant of the theory, also introduced by Berthelot, uses the concept of arithmetic D-modules,
and it has been developed in [Ber96a] and [Ber00]. This theory has better functoriality properties.
Thanks to Kedlaya’s semistable reduction theorem, [Ked11], there has been a great development
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(see [CT12] and [AC18]). This culminated to the proof of the Langlands correspondence for over-
convergent F -isocrystals by Abe, [Abe18].

Finally, it is worth mentioning that in 2006 Le Stum introduced a site-theoretic approach to defining
rigid cohomology, [LeS11]. Its definition remains in the realm of p-adic geometry.

2.5. Other theories. Ogus in [Ogu84] introduced a variant of the crystalline site, called the con-
vergent site. This was motivated by Dwork’s observation that the isocrystals that can be endowed
with a Frobenius structure have an additional “local convergence property”. The convergent site
produces a smaller category of isocrystals, called convergent isocrystals, with better proprieties.
Nonetheless, even in this case, the cohomology groups one obtains are not finitely generated for
open smooth varieties.

The theory of log crystalline cohomology has been introduced by Kato in [Kat89]. This is an
integral variant of crystalline cohomology which has some additional nice properties. For example,
it is finitely generated for smooth varieties admitting a smooth compactification with a normal
crossing divisor at infinity. Log crystalline cohomology has a category of coefficients, called log-
(iso)crystals.

Kramer-Miller constructed in 2016 the category of F -isocrystals with log-decay (see [KM16]) mo-
tivated by some ideas of Dwork. At the moment, he built a complete theory over smooth curves,
while in higher dimension he gave only some partial definitions “in coordinates”. With this he
managed to give a new proof of a theorem of Drinfeld–Kedlaya on the slopes of overconvergent
F -isocrystals [KM19]. Wan conjectured that there should be a “log-decay” crystalline cohomology
theory associated to these F -isocrystals.

2.6. Edged crystalline cohomology. Recently we constructed in [D’Ad24b] a new cohomology
theory, which interpolates crystalline, log crystalline, and rigid cohomology and recover Kramer-
Miller’s F -isocrystals with log-decay. This theory depends on the choice of a superadditive map of
sets τ : N>0 → N∪{∞}, which is called edge type. For each edge type τ , the associated cohomology
theory is called τ -edged crystalline cohomology.

More precisely, for every marked scheme3 X, we associated the marked crystalline site Cris(X),
of triples (U, T, γ) as above, with the difference that U ⊆ X is an open marked subscheme. For
each edge type τ we then constructed a sheaf of algebras Oτ

Xcris
over Cris(X). The sheaf Oτ

Xcris
is a

sort of localisation of the sheaf OXcris , called τ -edged localisation, where we add poles whose order
is “p-adically small”. This construction depends on τ . The geometric picture behind the name is
that rather than making a neat cut to the scheme by removing the marking, we leave an edge of
type τ .

For an algebraic variety X over a field k, we defined

H•
τ -cris(X/K) := lim−→

X⊆Y

H•(Cris(Y ),OY cris
)[1p ],

where Y varies among the proper marked varieties containing X outside the marking. These vector
spaces are endowed with natural integral lattices which depend on the choice of the compactification.

3A marked scheme is roughly speaking a scheme with the choice of an effective Cartier divisor at infinity.
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The edge type τ(e) = e corresponds to rigid cohomology, exponential edge types as τ(e) = pe

correspond to Kramer-Miller’s theory, and the edge type τ(e) ≡ ∞ correspond to crystalline coho-
mology. Note that the structural sheaves are constructed in such a way that Oτ1

Xcris
⊆ Oτ2

Xcris
when

τ1 ≤ τ2.

Besides recovering previous theories, with edged crystalline cohomology it is possible to get the
conjectured cohomology theory attached to log-decay isocrystals. Another crucial point is the
construction of a new integral theory for rigid cohomology with new finitenesses properties that
facilitates various geometric operations on the coefficients.

3. Slope filtration and Dieudonné modules

3.1. Slope filtration over a field. If k is a perfect field, the category of (coherent) crystals
over Spec(k) is equivalent to the category of finitely-generated W (k)-modules. To prove this, it is
convenient filtering the category Cris(Spec(k)) by truncated subcategories. For every e ≥ 0, we
write Σe for the PD-scheme (Spec(Z/pe), (p), γ) with γn(p) = pn/n! for every n ≥ 1 and we get full
subcategories

Cris(Spec(k)/Σe) ⊆ Cris(Spec(k))

consisting of those PD-schemes killed by pe. Thanks to following lemma, Spec(We(k)) endowed
with the natural PD-structure on (p) is the final object of Cris(Spec(k)/Σe).

Lemma 3.1.1. For every surjection A ↠ k with nilpotent kernel, there exists a unique dotted
arrow which makes the following solid diagram commute

A

W (k) k.

Proof. If σ : k → A is any set-theoretic section, one can prove that for every a ∈ k, the sequence
σ(a1/p

n
)p

n
is eventually constant and independent of σ. This defines a multiplicative section τ : k →

A, called Teichmüller lift. The section τ can be extended to a ring morphism W (k)→ A. □

Definition 3.1.2. For a scheme X of characteristic p, we write Isoc(X) for the isogeny category
of the category of coherent4 crystals over X. This is called the category of (coherent) isocrystals
over X. We write F-Isoc(X) for the category of isocrystalsM endowed with a Frobenius structure

ΦM :M(p) →M. These are the F -isocrystals.

Thanks to Lemma 3.1.1, the category of isocrystals over Spec(k) is the category of finite-dimensional
K(k)-vector spaces, where K(k) :=W (k)[1p ]. Thus, in this case, isocrystals form a very explicit cat-

egory. When we look at F -isocrystals over a perfect field there is a fundamental special behaviour:
the existence of the slope decomposition.

To explain the slope decomposition, let us first construct a special class of F -isocrystals, the ele-
mentary ones.

4Note that for us isocrystals will always be coherent.
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Construction 3.1.3. Let s, r be coprime integers with r > 0. We write Es/r for an r-dimensional
vector space with basis e1, · · · , er. Let φEs/r

be the semi-linear bijection of Es/r which sends ei to
ei+1 for i ≤ r and er to pser.

Theorem 3.1.4 (Dieudonné, Manin). If k is algebraically closed, for every F -isocrystal (M,φM ),
there exist positive integers a1, · · · , am and rational numbers q1, · · · , qm such that

(M,φM ) =
m⊕
i=1

E⊕ai
qi .

In particular, the category of F -isocrystals over k is semi-simple.

Definition 3.1.5. The numbers qi are the slopes of (M,φM ) and the dimension of E⊕ai
qi is the

multiplicity of each slope qi. The definition of slopes and their multiplicity extends to F -isocrystals
over any field (not necessarily perfect), by taking the base change to any algebraically closed field.
We say that an F -isocrystal over a field is isoclinic if it has only 1 slope (of any multiplicity).

By étale descent, the previous theorem admits the following corollary.

Corollary 3.1.6 (Dieudonné, Manin). If k is a perfect field, for every F -isocrystal (M,φM ) over
Spec(k), there exist isoclinic F -isocrystals (Mi, φMi) such that

(M,φM ) =

m⊕
i=1

(Mi, φMi).

3.1.1. The situation over more general fields is more complicated. The category of isocrystals is
not equivalent to a category of vector spaces. The main problem is that we can not construct
Teichmüller lifts as in the perfect case and the ring W (k) is not as well behaved as before (for
example, W (k)/p ̸= k). One can construct instead Cohen rings Λ such that Λ/p = k. Nonetheless,
there is some indeterminacy given by the fact that two different choices Λ and Λ′ are not canonically
isomorphic. In other words, there is a non-trivial group of ring automorphisms of Λ which lift the
identity of k. The result, is that the category of crystals over k is the category of coherent Λ-modules
endowed with a continuous topologically p-nilpotent connection.

The slope decomposition of F -isocrystals over the algebraic closure of k does not descend in general
to a decomposition over k. Nonetheless, every F -isocrystal over Spec(k) admits the slope filtration.

Theorem 3.1.7 ([Kat79]). If k is a field, for every F -isocrystal (M,φM ) over Spec(k), there
exists a unique Frobenius-stable filtration 0 = S0(M) ⊊ S1(M) ⊊ · · · ⊊ Sm(M) = M such that
every quotient Si+1(M)/Si(M) is isoclinic of some slope qi and q1 < q2 < · · · < qm.

The filtration of Theorem 3.1.7 is called the slope filtration of (M,φM ) and in general it does not
split.

Example 3.1.8. The classical example of a non-splitting slope filtration can be constructed when
k = Fp(t). The F -isocrystal (M,φM ) is given by the Dieudonné module of the p-divisible group of
an elliptic curve over k with transcendental j-invariant (see §3.4). In this case, the slope filtration
induces an exact sequence

0→ N →M → Q→ 0

with N of rank 1 and slope 0 and Q of rank 1 and slope 1. This sequence does not split.
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3.2. Frobenius-smooth schemes. In the study of crystals, there is a special class of schemes
with a particularly good behaviour.

Definition 3.2.1. We say that a scheme X over Fp is Frobenius-smooth if the absolute Frobenius
F : X → X is syntomic.

The condition of being Frobenius-smooth is equivalent to X being Zariski locally of the form
Spec(B) where B has a finite (absolute) p-basis, [Dri22, Lem. 2.1.1], which means that there exist
elements x1, · · · , xn such that every element b ∈ B can be uniquely written as

b =
∑

bpαx
α1
1 · · ·x

αn
n ,

where 0 ≤ αi ≤ p − 1 and bα ∈ B. Thanks to §1.1 of [BM90], a ring B with a p-basis admits a

p-adic lift B̃ ↠ B. By [ibid., Prop. 1.3.3], the datum of a crystal over Spec(B) is then equivalent to

the datum of a coherent B̃-module M+ and topologically p-nilpotent derivations of M+ associated
to some choice of a lift of a p-basis of B to B̃.

The main examples of Frobenius-smooth schemes that we will encounter are smooth schemes over
perfect fields and power series rings over perfect fields. If X is a Noetherian Frobenius-smooth
scheme, then it is regular by a result of Kunz (see Tag 0EC0 of [Stacks]).

Definition 3.2.2. When X is irreducible, Noetherian, and Frobenius-smooth we define

κ :=
∞⋂
i=1

Γ(X,OX)p
n

to be the field of constants of X. Note that κ is a field thanks to [Dri22, §3.1.2] and when X is in
addition a geometrically connected scheme of finite type over a perfect field, κ coincides with the
base field. We also write K for W (κ)[1p ].

Proposition 3.2.3 ([Dri22, Cor. 3.3.3]). If X is an irreducible Noetherian Frobenius-smooth
scheme, then Isoc(X) is a K-linear Tannakian category.

This allows us to define the monodromy groups of isocrystals in this situation.

Definition 3.2.4. Let X be an irreducible Noetherian Frobenius-smooth scheme and letM be an
isocrystal over X. We define ⟨M⟩ to be the Tannakian subcategory of Isoc(X) generated byM. If
ξ is an Ω-point of X for some perfect field Ω, we define G(M, ξ) to be the Tannaka group of ⟨M⟩
with respect to the fibre functor induced by ξ. We call it the monodromy group ofM with respect
to ξ.

3.3. Slope filtration over Noetherian Frobenius-smooth schemes. Let X be an irreducible
Noetherian Frobenius-smooth scheme over Fp with generic point η and letM be an isocrystal over
X such that F ∗M≃M. In this section we want to prove that F -isocrystals over X with constant
Newton polygon admit the slope filtration. For this purpose, we use a result that allows us to
exploit the slope filtration of the restriction to the generic point. We recall the following theorem
by de Jong.
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Theorem 3.3.1 ([deJ98, Thm. 1.1]). If X = Spec(A) is affine with A a DVR and (M+,ΦM+) is
a free F -crystal over X of finite rank, then for every (m,n) ∈ Z× Z>0, we have

H0(η,M+
η )

Fn=pm = H0(X,M+)F
n=pm .

Corollary 3.3.2. If X is as in Theorem 3.3.1 andM is an isocrystal over X such that F ∗M≃M,
then H0(η,Mη) = H0(X,M).

Proof. Let (M+,ΦM+) be an F -crystal such that M+[1p ] = M. Since X is of dimension 1, by

[Cre92a, Lem. 2.5.1], after possibly replacing M+ with its double dual we can assume M+ free.
We may further assume that the field of constants of A is algebraically closed thanks to [deJ98,
§3]. By Dieudonné–Manin classification both H0(η,Mη) and H

0(X,M) are generated by vectors v
such that Φn

M(v) = pmv for some m,n ∈ Z×Z>0. The result then follows from Theorem 3.3.1. □

De Jong’s theorem can be extended to more general irreducible Noetherian Frobenius-smooth
schemes by using a Hartogs’ argument. We need the following lemma.

Lemma 3.3.3. Let f : A → A′ be an injective morphism of Noetherian Frobenius-smooth rings
which sends p-bases to p-bases and write f̃ : Ã→ Ã′ for a p-adic lift of f . For an isocrystalM over
Spec(A) writeM′ for the pullback to Spec(A′) and M,M ′ for the associated modules over Ã[1p ] and

Ã′[1p ]. The following diagram is cartesian

(3.1)

H0(Spec(A),M) M

H0(Spec(A′),M′) M ′.

Proof. By [Dri22, Prop. 3.5.2], the moduleM is projective, which implies thatM →M ′ is injective.

We choose a lift {x̃1, . . . , x̃n} ⊆ Ã of a p-basis of A. By the assumption, this is sent by f̃ to a lift of a
p-basis of A′. This choice then defines differential operators ∂1, . . . , ∂n ofM ′ that stabiliseM ⊆M ′.
By [BM90, Prop. 1.3.3], this implies that H0(Spec(A′),M′) ⊆ M ′ (resp. H0(Spec(A),M) ⊆ M)
is the subspace of elements killed by ∂1, . . . , ∂n. This ends the proof. □

Theorem 3.3.4 ([DvH22, Thm. 3.2.4]). If X is an irreducible Noetherian Frobenius-smooth
scheme over Fp and N is a subquotient of an isocrystal M over X such that F ∗M ≃ M, then
H0(η,Nη) = H0(X,N ). In particular, the functor F-Isoc(X)→ F-Isoc(η) is fully faithful.

Proof. By Theorem 5.10 of [DE22], we know that N is a subobject of some isocrystalM′ such that
F ∗M′ ≃M′. Thanks to [ibid., Lemma 5.6], it is then enough to prove the result for an isocrystal
M such that F ∗M≃M. By Zariski descent, we may further assume X = Spec(A) affine.

Let Ã a p-adic lift of A and let Ãη be a p-adic lift of Frac(A) equipped with a morphism Ã ↪→ Ãη

lifting the inclusion A ⊆ Frac(A). We write S for the set of prime ideals p of Ã of codimension 1

containing p and for p ∈ S we write Ãp ⊆ Ãη for the p-adic completion of the localisation of Ã at p.

By construction, we have that Ãp/p = Ap. This implies that
⋃

p∈S Ãp ⊆ Ãη is dense with respect

to the p-adic topology since
⋃

p∈S Ap = Frac(A).

We first want to prove that ring B̃ :=
⋂

p∈S Ãp is equal to Ã. To do this, we first note that B̃ is

p-adically complete and p-torsion-free since each Ãp is so. In addition, by the p-torsion-freeness, we
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have that pB̃ =
⋂

p∈S pÃp, which implies that the morphism B̃/p→
⋂

p∈S Ãp/p ⊆ Ãη/p is injective.

On the other hand, thanks to the algebraic Hartogs’ lemma, we have that Ã/p =
⋂

p∈S Ãp/p. This

implies that Ã/p = B̃/p and in turn this shows that Ã = B̃.

Now, write M for the module over Ã[1p ] associated to M and for every p ∈ S write Mp for the

extension of scalars to Ãp[
1
p ]. By [Dri22, Prop. 3.5.2], we have that M is a direct summand of

Ã[1p ]
⊕n for some n > 0. Combining this with the fact that Ã[1p ] =

⋂
p∈S Ãp[

1
p ], we deduce that

M =
⋂
p∈S

Mp.(3.2)

By Lemma 3.3.3 applied to the inclusion A ⊆ Frac(A), if we denote by Mη the Ãη[
1
p ]-module

associated toMη, we get the cartesian square

(3.3)

H0(Spec(A),M) M

H0(η,Mη) Mη.

□

It remains to prove that every section v ∈ H0(η,Mη) is also contained in M . By (3.2), this is
equivalent to showing that v is in Mp for every p ∈ S, which follows from Corollary 3.3.2. □

Remark 3.3.5. Theorem 3.3.4 improves, a theorem by Kedlaya (see [DK17, Thm. 2.2.3]). We
also prove in Theorem 5.2.1 a stronger form of Theorem 3.3.4 under the additional assumption that
M upgrades to an F -isocrystal with slope filtration.

Theorem 3.3.4 can be used to prove the following result on the existence of the slope filtration.

Theorem 3.3.6 ([DvH22, Cor. 3.2.6]). Let X be an irreducible Noetherian Frobenius-smooth
scheme over Fp. If (M,ΦM) is an F -isocrystal over X with constant Newton polygon, then it
admits the slope filtration.

Proof. As in [Kat79], by taking exterior powers, it is enough to prove that if (M,ΦM) has minimal
slope of multiplicity 1, then there exists a rank 1 sub-F -isocrystal of (M,ΦM) of minimal slope.
Note also that the result is known on the generic point η of X (see [ibid.] and [dJO00, Claim 2.8]).
If S1(Mη) ⊆Mη is the subobject of minimal slope, up to taking a power of the Frobenius structure
for some s > 0 and a Tate twist, we may assume that it corresponds to a lisse Qqs-sheaf Fη over
η. This lisse sheaf admits models over every codimension 1 point by [dJO00, Prop. 2.10], thus it
admits an extension to a lisse Qqs-sheaf F over X by Zariski–Nagata purity theorem. The lisse
sheaf F corresponds then to an F s-isocrystal (N ,ΦN ) over X which, by Theorem 3.3.4, embeds in
(M,Φs

M) providing a model of the inclusion S1(Mη) ⊆Mη. This yields the desired result. □

Remark 3.3.7. Note that in [Ked24] Kedlaya proves the analogue of Theorem 3.3.6 for perfect
schemes using arc-descent.
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3.4. Dieudonné modules of p-divisible groups. One of the key aspects of crystalline cohomol-
ogy, which motivated the very construction, is its relationship with p-divisible groups. Let S be a
scheme of positive characteristic p.

Definition 3.4.1. A p-divisible group over S is a sheaf X of abelian groups over (Sch/S)fppf such
that the following conditions are satisfied.

(1) X = lim−→n
X[pn] (p-torsion).

(2) ·p : X→ X is surjective (p-divisible).
(3) X[pn] is a finite locally-free group scheme for every5 n ≥ 0.

Example 3.4.2. Basic examples of p-divisible groups are Qp/Zp := lim−→n
Z/pn and µp∞ := lim−→n

µpn .
A reacher source of examples is provided by the p-divisible group attached to a commutative abelian
scheme A over S. This is defined by A[p∞] := lim−→n

A[pn].

Given a p-divisible group X, we also have a notion of Cartier dual

X∨ := lim−→
n

Hom(X[pn],Gm,S),

of Tate module

TpX := lim←−
·p

X[pn] = Hom(Qp/Zp,X),

and universal cover

X̃ := lim←−
·p

X = Hom(Qp/Zp,X)[1p ].

These sheaves satisfy the fpqc sheaf condition as well. Note also that TpX is a sheaf of Zp-modules

while X̃ is a sheaf of Qp-vector spaces.

Lemma 3.4.3 ([SW13, Prop. 3.3.1]). If X is connected, then TpX, and X̃ sit in the following exact
sequence as fpqc sheaves

(3.4) 0→ TpX→ X̃→ X→ 0.

Remark 3.4.4. Note that (3.4) fails to be exact for the fppf topology since X̃ → X fails to be
surjective.

We also recall that X◦ := lim−→n
X[pn]◦ is a p-divisible subgroup of X and if S is the spectrum of a

field we have an exact sequence

0→ X◦ → X→ Xét → 0,

where Xét := lim−→n
X[pn]ét. This should be thought as a coarser version of the slope filtration.

Let us recall the following fundamental representability results for the objects we defined.

Theorem 3.4.5 ([Mes72]). If X is connected, then X→ S is Zariski-locally represented by

Spf(R[[M ]])→ Spec(R)

with M a finite free R-module.

5It is actually sufficient to ask for this condition when n = 1.
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Corollary 3.4.6 ([SW13, Prop. 3.1.3, Prop. 3.3.1]). If S is perfect and X is connected, then

Zariski-locally X̃→ S is represented by

Spf(R[[x
1/p∞

1 , · · · , x1/p
∞

d ]])→ Spec(R)

while TpX→ S is represented by

Spec(R[x
1/p∞

1 , · · · , x1/p
∞

d ]/(x1, · · · , xd))→ Spec(R).

Connected p-divisible groups should be thought then as commutative groups that are geometrically
p-adic fibrations in open balls. Following the original idea of Dieudonné, it has been developed a
linearisation procedure that captures the behaviour of these fibrations and their commutative group
structures. This can be now expressed using the crystalline site of S and reminds the Lie algebra
construction associated to a Lie group. This linearisation often provide a complete classification of
p-divisible groups, analogous to how Lie algebras classify simply connected Lie groups.

Definition 3.4.7. A Dieudonné module over S is a locally-free coherent crystalM+ over S endowed
with an isomorphism ΦM+ : F ∗M ∼−→M such that

M+ ⊆ ΦM+(F ∗M+) ⊆ 1
pM

+.

We write DM(S) for the category they form.

Theorem 3.4.8 ([BBM82],[deJ95, Thm. 4.1.1]). If S is a Frobenius-smooth scheme there exists
an equivalence of categories

D : {p-divisible groups over S} → DM(S),

called crystalline Dieudonné module functor.

3.5. Quasi-regular semiperfect rings. Another nice class of schemes where crystals have a par-
ticularly good behaviour are the affine schemes which are the spectrum of a quasi-regular semiperfect
ring.

Definition 3.5.1. We say that a scheme S over Fp is quasi-syntomic if its cotangent complex LS/Fp

has Tor-amplitude in the interval [−1, 0].We also say that an fpqc cover T → S is a quasi-syntomic
cover if LT/S has Tor-amplitude in the interval [−1, 0]. Note that by [Stacks, Tag 0FJV], an fppf
cover T → S is syntomic if and only if it is quasi-syntomic (hence the name). If S = Spec(R) is
quasi-syntomic and R is semiperfect, then we say that R is quasi-regular semiperfect (qrsp).

The notion of quasi-regular semiperfect rings is related to another notion introduced by Quillen.

Definition 3.5.2. An ideal I of a ring A is said to be quasi-regular if the cotangent complex
L(A/I)/A has Tor-amplitude concentrated in degree −1.

The relation between the two definitions is explained by the following lemma.

Lemma 3.5.3. Let A be a perfect ring and A↠ R a quotient with kernel I, then R is qrsp if and
only if I is quasi-regular
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Proof. By functoriality, the absolute Frobenius of A induces on LA/Fp
an automorphism. This has

to be the 0-morphism since, in characteristic p, the differential forms dxp vanish. This implies
that LA/Fp

= 0. Thanks to the base change triangle for the cotangent complex, we deduce that

LR/Fp

∼−→ LR/A. It remains to prove that if R is quasi-syntomic, then π0(LR/A) = 0. This follows

from the fact that, since A→ R is surjective, the module Ω1
R/A vanishes. □

Example 3.5.4. The main example of qrsp rings, besides the perfect ones, are the rings of the
form

Spec(R[x
1/p∞

1 , · · · , x1/p
∞

d ]/(x1, · · · , xd))
with R a perfect ring. Thus, by Proposition 3.4.6, an example is provided by the algebra of
functions of the Tate module of a connected p-divisible group over a perfect field. We will see that
the stabilisers of the formal homogeneous spaces of §6.3 are of this form.

Suppose that R is qrsp6 and write S := Spec(R). As noted by Fontaine, the crystalline site
Cris(S/Σn) admits a final object for every n ≥ 0, as in the case of perfect fields. Let us briefly
recall the construction.

Let R♭ be the perfect ring

lim (· · · φ−→ R
φ−→ R)

and let J be the kernel of the composition

W (R♭)→ R♭ → R♭/p.

We write7 Acris(R) ⊆W (R♭)[1p ] for the smallest p-adically complete subring containing W (R♭) and
xn

n! for all x ∈ J and n ≥ 0. By construction, JAcris(R) admits a canonical PD-structure induced

by the one of JW (R♭)[1p ]. One can check that for every n the scheme Spec(Acris(R)/p
n) is the final

object of Cris(S/Σn). As a consequence, the category of locally-free coherent crystals over S is
equivalent to the category of locally finitely-generated and free Acris(R)-modules.

Theorem 3.5.5 ([ALB23, Thm. 4.8.5]). If S is the spectrum of a qrsp ring, there exists a fully
faithful functor

D : {p-divisible groups over S} → DM(S),

which is functorial in S.

Corollary 3.5.6. If X is a p-divisible group over a qrsp ring R, we have the following natural
commutative diagram

TpX(R) D(X)φ=id

X̃(R) (D(X)[1p ])
φ=id.

=

=

6Some of the things we will say here are actually true for general semiperfect rings.
7We give here a slightly ad hoc definition of Acris(R) that coincides with the standard one since R is qrsp, see

[SW13, Prop. 4.1.11]. In general, one should rather use the notion of PD-envelope.
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Proof. We have

TpX(R) = HomR((Qp/Zp)R,X)
= HomAcris,φ(Acris(R),D(X))

= D(X)φ=1.

We can argue similarly after inverting p to get the analogous result for X̃(R). □

3.6. Complete slope divisibility. We conclude this section with some recalls on the notion of
complete slope divisibility.

Definition 3.6.1. For a perfect ring R we say that an isoclinic Dieudonné module (M+, φM+) over
R is completely slope divisible if there exist integers s and a with s ̸= 0 such that φs

M+M
+ = paM+.

We also say that a Dieudonné module (M+, φM+) over R is completely slope divisible if it is the
direct sum of isoclinic completely slope divisible Dieudonné modules and we say that a p-divisible
group is completely slope divisible if the associated Dieudonné module is so.

Remark 3.6.2. Since we assumed that R is perfect, the definition we gave is equivalent to the
usual one thanks to [OZ02, Prop. 1.3]. Note also that by [ibid., Cor. 1.5], if R is an algebraically
closed field, an isoclinic Dieudonné module is completely slope divisible if and only if it is defined
over a finite field.

Lemma 3.6.3. A Dieudonné module over Fp is completely slope divisible if and only if it is a direct
sum of isoclinic Dieudonné modules.

Proof. By [OZ02, Cor. 1.5] it is enough to prove that every isoclinic Dieudonné module is defined
over a finite field. By Dieudonné theory, this follows from the fact that a p-divisible group which
is geometrically isogenous to a p-divisible group defined over a finite field, is itself defined over a
finite field. □

Lemma 3.6.4. If (M+, φM+) is a completely slope divisible Dieudonné module over Fp and (N+, φN+)
is a Dieudonné submodule such that M+/N+ is torsion-free, then (N+, φN+) is completely slope
divisible.

Proof. By Lemma 3.6.3, we have to prove that (N+, φN+) is a direct sum of isoclinic Dieudonné
modules. By the Dieudonné–Manin classification, there exists a Dieudonné submodule (N̄+, φN̄+) ⊆
(N+, φN+) of finite index which decomposes into a direct sum ⊕λ∈QN̄

+
λ of isoclinic Dieudonné mod-

ules. For an element x ∈ N+, there exist by assumption xλ ∈M+
λ for λ ∈ Q almost all 0 such that

x =
∑

λ∈Q xλ. Since N̄
+ ⊆ N+ is of finite index, there exists n big enough such that pnx ∈ N̄+, so

that pnxλ ∈ N̄+ for every λ. This implies that pnxλ ∈ N+ for every λ and by the assumption that
M+/N+ is torsion-free, we deduce that each xλ lies in N+. This yields the desired result. □

4. Parabolicity conjecture

4.1. Introduction. Let X be a smooth geometrically connected variety over a perfect field k of

positive characteristic p. For an overconvergent Fn-isocrystal (M†,Φ†
M) over X we write (M,ΦM)

for the associated F -isocrystal and we suppose that (M,ΦM) admits the slope filtration

0 = S0(M) ⊊ S1(M) ⊊ ... ⊊ Sm(M) =M.
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Let η be a point of X with perfect residue field and consider the monodromy groups G(M, η) and
G(M†, η). The former algebraic group is a subgroup of the latter and they both are subgroups
of GL(Mη), where Mη is the fibre of M at η. In [D’Ad23] we proved the following fundamental
result about these groups.

Theorem 4.1.1. The subgroup G(M, η) ⊆ G(M†, η) is the subgroup of G(M†, η) stabilising the
slope filtration of Mη. Moreover, when M† is semi-simple, G(M, η) is a parabolic subgroup of

G(M†, η).

This solved the parabolicity conjecture, initially proposed in [Cre92a, page 460]. Partial results
on this conjecture were previously obtained in [Cre92b], [Cre94], [Tsu02], [AD22], and [Tsu23].
Theorem 4.1.1 can be seen as a natural enhancement of Kedlaya’s full faithfulness theorem, proven
in [Ked04b].

When k is a finite field andM† is semi-simple, we established in [D’Ad20] a fundamental comparison
theorem for the group G(M†, η)◦ and the corresponding monodromy group of the semi-simple ℓ-

adic lisse sheaves with the same L-function as (M†,Φ†
M) (see also [Dri18] and [Pál22]). Since

the monodromy groups of lisse sheaves are much better understood,this comparison allows us to
compute G(M†, η)◦ in many cases where it was not known. This comparison theorem is a highly
nontrivial result which uses the Langlands correspondence for lisse sheaves and overconvergent
F -isocrystals, [Laf02], [Abe18]. By combining [D’Ad20] and Theorem 4.1.1, one can compute the
group G(M, η).

As first noted by Chai, the determination of G(M, η) in the case of Shimura varieties could have
been used to attack Chai–Oort Hecke orbit conjecture (see [Cha13, §7]). After the resolution of the
parabolcity conjecture, this insight indeed led to a proof of Chai–Oort’s conjecture. The conjecture
was first proved by van Hoften in the ordinary case [vH24], and was subsequently generalised in
[DvH22]. In §6, we will present some ideas of the proof. Beyond the Hecke orbit conjecture, the
parabolicity conjecture has emerged as a powerful tool in the study of Shimura varieties modulo p,
as explored in [vHX21] and [Jia23].

Another consequence of Theorem 4.1.1, is the following result, which was a conjecture proposed by
Kedlaya in [Ked22, Rmk. 5.14].

Theorem 4.1.2 ([D’Ad23, Cor. 1.1.4]). Let X be a smooth connected variety over a perfect

field k and let (M†
1,Φ

†
M1

) and (M†
2,Φ

†
M2

) be two irreducible overconvergent Fn-isocrystals over

X with constant slopes. If (S1(M1),ΦM1 |S1(M1)) and (S1(M2),ΦM2 |S1(M2)) are isomorphic Fn-

isocrystals, then (M†
1,Φ

†
M1

) and (M†
2,Φ

†
M2

) are isomorphic overconvergent Fn-isocrystals.

The conjecture was solved in dimension 1 and when k is a finite field by Tsuzuki in [Tsu23].

One of the main tools introduced and studied in [D’Ad23] is the notion of †-hull of a sub-Fn-
isocrystal.

Definition 4.1.3. Let (N ,ΦN ) ⊆ (M,ΦM) be an inclusion of Fn-isocrystals. The †-hull of
(N ,ΦN ) in (M,ΦM) is the smallest subobject of (M,ΦM) containing (N ,ΦN ) and coming from
an overconvergent Fn-isocrystal. We denote it by (N ,ΦN ).
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We obtained the following fundamental result which relates the slope filtration with the operation
of taking †-hull7s.

Theorem 4.1.4 (Theorem 4.3.2). Let X be a smooth variety over a perfect field k and let (N ,ΦN ) ⊆
(M,ΦM) be an inclusion of Fn-isocrystals over X. IfM comes from an overconvergent isocrystal
and has constant slopes, then S1(N ,ΦN ) = S1(N ,ΦN ).

When X is a curve, we first reduced the statement to the case X = A1
k, then we proved an analogous

result for the generic point of A1
k using de Jong’s reverse filtration (Theorem 4.3.9). Finally, we

deduced the global result from the generic one. The idea of using Theorem 4.3.9 was suggested to
the author by Kedlaya and independently used in [Tsu23, Prop. 6.1]. In his proof Tsuzuki makes
use also of a certain filtration for overconvergent F -isocrystals, namely the PBQ filtration, that
he constructs in [Tsu23, Thm. 3.27]. Our proof avoids the use of this filtration and uses instead
some ideas of what is now called edged crystalline cohomology, [D’Ad24b]. At the same time, with
Theorem 4.1.4 we recovered the PBQ filtration and we extended it to arbitrary smooth varieties,
[D’Ad23, Cor. 5.4.2].

To deduce Theorem 4.1.1 from Theorem 4.1.4, we proved first that Theorem 4.1.4 implies the
analogue of Theorem 4.1.1 for some slightly different groups: the monodromy groups of F∞-
isocrystals (Proposition 4.4.2). Subsequently, to pass from this variant to the original statement,
we introduced a third type of monodromy groups: the monodromy groups of isocrystals with
punctual Qur

p -structure, defined in §4.2.8. These latter monodromy groups are Qur
p -forms of Crew’s

monodromy groups (the ones defined in [Cre92a]), thus we are then able to prove Theorem 4.1.1.

For higher dimensional varieties we deduced Theorem 4.1.4 from the case of curves, thanks to a
new Lefschetz theorem for overconvergent Fn-isocrystals (Theorem 4.5.1).

4.2. Punctual Qur
p -structures. In the proof of the parabolicity conjecture we had to deal with

the fact that the field of scalars of the category of isocrystals is in general much bigger than the field
of scalars of the category of F -isocrystals. We encountered this issue when we wanted to prove that
Theorem 4.1.4 implies Theorem 4.1.1. This implication, by its nature, is easier for the monodromy
groups of Fn-isocrystals, but it is much harder for the monodromy groups defined by Crew (without
Frobenius structure). To jump from one setting to the other we slightly modified both categories.
We first replaced the category of Fn-isocrystals with the category of F∞-isocrystals, namely the
2-colimit of the categories of Fn-isocrystals for various n. If k is big enough, this new category is
a Qur

p -linear category. On the other side, we constructed the category of isocrystals with punctual
Qur

p -structure (see §4.2.2), which is simply the category of isocrystals endowed with the choice of a
Qur

p -linear lattice at some fibre. This other Tannakian category is also Qur
p -linear.

There is a natural functor between these two categories thanks to Dieudonné–Manin classification
(Lemma 4.2.5). To prove Theorem 4.1.1 we relate the monodromy groups of these objects and their
overconvergent variants thanks to Proposition 4.2.9, which is an analogue of the homotopy exact
sequence for the étale fundamental group. Let us explain this more in detail.

Hypothesis 4.2.1. Throughout this section, we assume that k is endowed with the choice of an
inclusion Fp ⊆ k. In particular, for every perfect field extension Ω/k we have a preferred embedding
Qur

p ↪→ K(Ω).
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Definition 4.2.2. If η is a geometric point of X, an isocrystal with (punctual) Qur
p -structure over

(X, η) is a pair (M, VM) whereM is an isocrystal and VM is a Qur
p -linear lattice of ωη(M), namely

a Qur
p -linear vector subspace VM ⊆ ωη(M) such that

VM ⊗Qur
p
K(Ω) = ωη(M).

A morphism of isocrystals with Qur
p -structure (M, VM) → (N , VN ) is a morphism of isocrystals

f : M → N such that ωη(f)(VM) ⊆ VN . We write IsocQur
p
(X, η) for the category of isocrystals

with punctual Qur
p -structure over (X, η).

Lemma 4.2.3. If X is geometrically connected, the category IsocQur
p
(X, η) has a natural structure

of a Qur
p -linear neutral Tannakian category.

Now that we have a neutral Tannakian category of isocrystals with smaller field of scalars, we want
to study its interaction with the category of Fn-isocrystals.

Construction 4.2.4. Let Ω/k be an algebraically closed field extension. For an Fn-isocrystal
(M,ΦM ) over Ω, we write ωQur

p
(M,ΦM ) ⊆ M for the Qur

p -linear vector subspace of vectors v ∈ M
such that Φi

Mv = pjv for some (i, j) ∈ Z>0 × Z.

Lemma 4.2.5. The vector space ωQur
p
(M,ΦM ) is a Qur

p -linear lattice of the K(Ω)-vector space M .

Proof. This is an immediate consequence of Theorem 3.1.4. □

Definition 4.2.6. We say that ωQur
p
(M,ΦM ) is the Dieudonné–Manin Qur

p -structure of (M,ΦM ).

The assignment (M,ΦM ) 7→ ωQur
p
(M,ΦM ) produces a Qur

p -linear fibre functor ωQur
p

: F∞-Isoc(Ω)→
VecQur

p
. If η is a Ω-point of X, we write

ωη,Qur
p

: F∞-Isoc(X)→ VecQur
p

for the composition ωQur
p
◦ η∗ and we write

Λη : F∞-Isoc(X)→ IsocQur
p
(X, η)

for the functor obtained by sending (M,Φ∞
M) 7→ (M, ωη,Qur

p
(M,Φ∞

M)). We say that an object in

the essential image of Λη is an isocrystal with Dieudonné–Manin Qur
p -structure over (X, η).

Remark 4.2.7. The existence of the Dieudonné–Manin Qur
p -structure of an F -isocrystal over an

algebraically closed field has its own interest. For example, thanks to [Ked06a], if k is any field of
characteristic p, one can associate to a variety X/k the finite-dimensional Qur

p -linear vector spaces

ωQur
p
(H i

rig(Xkalg/K(kalg))) and their variant with compact support. This assignment produces a

Qur
p -linear cohomology theory with all the desired properties (e.g. Poincaré duality, the Künneth

formula, etc.). This solves in a minimal way Serre’s obstruction to the existence of a Qp-linear
cohomology theory in characteristic p.

Definition 4.2.8. Let (X, η) be a geometrically connected variety over k endowed with a geo-
metric point η. For an Fn-isocrystal (M,ΦM) we write G(M,Φ∞

M, η) for the Tannaka group of
⟨M,Φ∞

M⟩ with respect to ωη,Qur
p

and G(M, VM, η) for the Tannaka group of ⟨M, VM⟩ with respect
to ωη,Qur

p
, where VM is the Dieudonné–Manin Qur

p -structure induced by ΦM. We also denote by

G(M,Φ∞
M, η)cst the Tannaka group of constant F∞-isocrystals in ⟨M,Φ∞

M⟩, namely those F∞-
isocrystals coming from Spec(k). We give analogous definitions in the overconvergent setting.
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The fundamental result for these monodromy groups is the following exact sequence, reminiscence
of the homotopy exact sequence for the étale fundamental group.

Proposition 4.2.9 ([D’Ad23, Prop. 3.2.8]). For a †-extendable Fn-isocrystal (M,ΦM), we have
the following commutative diagram of algebraic groups over Qur

p

1 G(M, VM, η) G(M,Φ∞
M, η) G(M,Φ∞

M, η)cst 1

1 G(M†, VM, η) G(M†,Φ†,∞
M , η) G(M†,Φ†,∞

M , η)cst 1.

The rows are exact, the first two vertical arrows are closed embeddings and the last arrow is a
faithfully flat morphism.

Remark 4.2.10. Thanks to Theorem 4.1.4 one can also show that the morphismG(M,Φ∞
M, η)cst →

G(M†,Φ†,∞
M , η)cst is an isomorphism.

4.2.1. Another crucial analysis we had to undertake in [D’Ad23, §3] involved comparing the mon-
odromy groups in IsocQur

p
(X, η) and Isoc(X). Generally, it is easy to construct examples where the

scalar extension of the monodromy group of an isocrystal with Qur
p -structure from Qur

p to K results
in a larger monodromy group than the monodromy group of the isocrystal. However, for isocrystals
with Dieudonné–Manin Qur

p -structure, we proved that the expected base change property holds.

Proposition 4.2.11 ([D’Ad23, Prop. 3.3.2]). For an Fn-isocrystal (M,ΦM), if VM is the associ-
ated Dieudonné–Manin Qur

p -structure, we have G(M, η) ≃ G(M, VM, η)⊗Qur
p
K.

4.3. The case of curves.

Notation 4.3.1. Let (M,ΦM) be a †-extendable Fn-isocrystal over X with constant slopes. We
say that (M,ΦM) satisfies MS(M,ΦM) (where MS stands for “minimal slope”) if for every sub-
Fn-isocrystal (N ,ΦN ) ⊆ (M,ΦM), the isocrystals S1(N ) and S1(N ) are the same. We also say
that X satisfies MS(X) if for every n > 0 and every †-extendable Fn-isocrystal (M,ΦM) over X,
we have that MS(M,ΦM) is true.

Theorem 4.1.4 can be then written in the following form.

Theorem 4.3.2. A smooth variety X over a perfect field k satisfies MS(X).

4.3.1. At the beginning of [D’Ad23, §4] we proved some reductions of Theorem 4.3.2. We showed
that we could assume n = 1, that we could check MS(X) on isoclinic sub-F -isocrystals, and we
proved the following lemma.

Lemma 4.3.3. Let f : Y → X be a dominant étale morphism between smooth varieties.

(1) MS(Y ) implies MS(X).
(2) If f is finite, then MS(X) implies MS(Y ).

Combining Lemma 4.3.3 and [Ked05], in dimension 1 we reduced MS(X) to MS(A1
k). In turn, to

prove MS(A1
k) we used an analogue of MS(−) for the generic point of A1

k.
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4.3.2. Consider the ring OE := (W [t](p))
∧, where (−)∧ denotes the p-adic completion. This is a

complete discrete valuation ring unramified over W with residue field k(t). Let OE† ⊆ OE be the
subring of functions which converge in some annulus ∗ ≤ |t| < 1. These two rings are both endowed
with a Frobenius lift φ(t) = tp and a derivation ∂t. Write E and E† for the respective fields of
fractions.

Definition 4.3.4 ((φ,∇)-modules). If E is either E or E†, we say that a finite dimensional vector

space M over E is a (φ,∇)-module if it is endowed with a φ-linear isomorphism φM : M
∼−→ M

and an additive morphism ∇∂t :M →M which satisfies the Leibniz rule and such that ∇∂t ◦φM =
ptp−1φM ◦ ∇∂t .

The category F-Isoc(k(t)) is the category of (φ,∇)-modules over E and we denote by F-Isoc†(k(t))
the category of (φ,∇)-modules over E†. Thanks to Theorem 5.1 [Ked04b], the natural functor

F-Isoc†(k(t))→ F-Isoc(k(t))

is fully faithful.

Proposition 4.3.5 (Kedlaya, Tsuzuki8). If N ⊆M is an inclusion of (φ,∇)-modules over E and
M is †-extendable, then S1(N) = S1(N).

To prove Proposition 4.3.5 we first need the following construction.

Construction 4.3.6. Let Q† be the image of the composition of the natural morphisms

(M †)∨ := HomE†(M †, E†)→ HomE(M, E)→ HomE(N, E) =: N∨.

We have natural maps

M∨ = (M †)∨ ⊗E† E ↠ Q† ⊗E† E ↠ N∨.

The first arrow is surjective by construction, the second one is surjective because the morphism
M∨ → N∨ is surjective. Note that even though Q† ⊆ N∨, the second map needs not to be injective.
Dualising with respect to E we get inclusions N ⊆ Q∨ ⊆M .

Lemma 4.3.7. The (φ,∇)-module Q∨ is the †-hull of N in M . In other words, N is the unique

submodule of M which contains N and comes from some N
† ⊆ M † such that (N

†
)∨ → N∨ is

injective.

Proof. By construction, Q∨ is †-extendable and it contains N , so that N ⊆ Q∨. On the other hand,

we have morphisms (M †)∨ ↠ (N
†
)∨ → N∨, where the first one is surjective. By definition, the

morphism (N
†
)∨ → N∨ factors through Q†, which implies that Q∨ ⊆ N . □

We recall now the reverse filtration introduced by de Jong in [deJ98, Prop. 5.5]. For this, we need

to introduce two other discrete valuation fields lifting k(t).

8We first learned about a proof of Proposition 4.3.5 from Kedlaya via a private communication. The proposition

also corresponds essentially to [Tsu23, Thm. 2.14].
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Definition 4.3.8. Let OEalg be the ring of Witt vectors of k(t) (which is contained in the ring

Γ2 = Γ2,1 in de Jong’s notation). Every element of OẼ can be written uniquely as
∑∞

i=0[fi]p
i where

[fi] is the Teichmüller lift of some fi ∈ k(t). Consider the subring O†
Ẽ
⊆ OẼ of those series such

that the t-adic valuations of fi are bounded below by some linear function in i. This subring is
preserved by the Frobenius of OẼ (and it is contained in Γ2,c = Γ2,1,c in de Jong’s notation). We

write Ẽ† and Ẽ for the fraction fields.

Theorem 4.3.9 ([deJ98, Prop. 5.5]). For a φ-module M †
alg over Ẽ† the following statements are

true.

(i) M †
alg admits a reverse slope filtration, i.e. there exists a filtration

0 = Srev
0 (M †

alg) ⊊ Srev
1 (M †

alg) ⊊ · · · ⊊ Srev
m (M †

alg) =M †
alg

of φ-modules over Ẽ† such that (Srev
i (M̃ †)/Srev

i−1(M̃
†)) ⊗Ẽ† Ẽ is isomorphic to

Sm−i(Malg)/Sm−i−1(Malg).

(ii) If M † is isoclinic of slope s/r, after possibly multiplying s and r by some positive integer,

the φ-module M †
alg[p

1/r] admits a basis of vectors {v1, . . . , vd} such that φ(vi) = ps/rvi.

Lemma 4.3.10. Let M † be a φ-module over E† and let N be an isoclinic φ-module over E of slope
s/r. For every morphism ψ :M → N of φ-modules, if the restriction of ψ to M † is injective, then
the maximal slope of M is s/r and the rank of Sm(M)/Sm−1(M) is smaller or equal than the rank
of N .

Proof. This is a variant of [Ked04b, Lem. 4.2]. Since E†alg is flat over E† and E ⊗E† Ẽ† → Ẽ is

injective by [Ked04b, Prop. 4.1], then ψ|M† induces an injective morphism

ψ′ : M̃ † :=M † ⊗E† Ẽ† → N ⊗E† Ẽ† → N ⊗E Ẽ .
The restriction of ψ′ to Srev

1 (M †
alg) induces a non-trivial morphism

Srev
1 (M †

alg)⊗Ẽ† Ẽ → N ⊗E Ẽ .

This implies that the slope of Srev
1 (M †

alg), which is the maximal slope of M , is s/r. More-

over, by Theorem 4.3.9.(ii), after possibly enlarging r, the dimension of the Qp(p
1/r)-vector space

(Srev
1 (M †

alg)[p
1/r])φ=ps/r is equal to the rank of Sm(M)/Sm−1(M). Similarly, by the Dieudonné–

Manin decomposition, (N ⊗E Ẽ [p1/r])φ=ps/r is a Qp(p
1/r)-vector space of dimension equal to the

rank of N . We then obtain the inequality of ranks thanks to the injectivity of ψ′. □

4.3.3. Proof of Proposition 4.3.5. By the previous reductions, it is enough to prove the result when
N is isoclinic of slope s/r and N = M . In that case, we have to check that N has minimal slope

s/r and that the inclusion N ⊆ S1(N) is an equality. By Lemma 4.3.7, the morphism N
∨ → N∨

satisfies the assumptions of Lemma 4.3.10, thus N has minimal slope s/r. Moreover, since

rk(N) = rk(N∨) ≥ rk(Sm(N
∨
)/Sm−1(N

∨
)) = rk(S1(N)),

we get N = S1(N). □

In order to relate Proposition 4.3.5 with MS(A1
k) we had to prove the following proposition.
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Proposition 4.3.11 ([D’Ad23, Prop. 4.2.12]). Let N ⊆M be an inclusion of (φ,∇)-module over
K⟨u⟩, where M is †-extendable and has constant slopes. The (φ,∇)-module N ⊗ E is the †-hull of
N ⊗ E in M ⊗ E.

The main tool for this, is an algebraic description of the ring E†. This viewpoint led to the definition
of edged crystalline cohomology in [D’Ad24b]. Let us recall it.

Construction 4.3.12. Let An be the image of the morphism W ⟨u1, . . . , un⟩ →W ⟨u⟩ which sends
ui 7→ ūi := pui and let mn ⊆ An[t] be the maximal ideal (p, t, ū1, . . . , ūn). We denote by Bn ⊆ OE
the image of (An[t])mn → OE . The rings An and Bn provide integral models of the rings of
overconvergent series. More precisely, we have that lim−→n

An[
1
p ] = K⟨u⟩† and lim−→n

(Bn)
∧[1p ] = E

†.

Note that the An-algebra Bn can be also written as(
An[t]

(ū1t−p,...,ūntn−p)

)
mn

.

Theorem 4.3.13 (See also [Tsu23, Prop. 6.1]). A smooth curve X over a perfect field k satisfies
MS(X).

Proof. By the above reductions, we may assume X = A1
k. Let N ⊆ M be an inclusion of (φ,∇)-

module over K⟨u⟩, where M is †-extendable and has constant slopes. By Proposition 4.3.11, we
have that N ⊗ E is the †-hull of N ⊗ E in M ⊗ E . Therefore, by Proposition 4.3.5,

S1(N)⊗ E = S1(N ⊗ E) = S1(N ⊗ E) = S1(N)⊗ E .
This implies that S1(N) and S1(N) have the same slope and the same rank, so that S1(N) = S1(N).
This concludes the proof. □

4.4. Chevalley theorem and filtrations. In this section Hypothesis 4.2.1 is in force. Let η ∈
X(Ω) be a perfect point of X and let (M†,Φ†

M) be an overconvergent Fn-isocrystal with constant
slopes. Consider the Dieudonné–Manin fibre functor ωη,Qur

p
: ⟨M,Φ∞

M⟩ → VecQur
p

associated to η.

Write G for G(M†,Φ†,∞
M , η) and H for G(M,Φ∞

M, η).

Definition 4.4.1. For every e, let G1/e
m be the torus with character group 1

eZ and G1/∞
m :=

lim←−e
G1/e

m . If r is the lcm of the denominators of the slopes ofM, for every (M′,Φ∞
M′) ∈ ⟨M,Φ∞

M⟩
we denote by S̃s/r(ωη,Qur

p
(M′

η,Φ
∞
M′)) ⊆ ωη,Qur

p
(M′

η,Φ
∞
M′) the Qur

p -linear vector subspace of slope

at most s/r. This defines an exact ⊗-filtration S̃• of ωη,Qur
p

indexed by 1
rZ, that in turn defines

a morphism λ : G1/∞
m ↠ G1/r

m → G (cf. [Saa72, §2.1.1, page 213]). We say that λ is the quasi-
cocharacter attached to the slope filtration ofMη. We denote by PG(λ) the subgroup of G of those

⊗-automorphisms of ωη,Qur
p

preserving S̃• (as in [ibid., §2.1.3, page 216]).

Proposition 4.4.2. If MS(X) is true then H = PG(λ). In particular, if G is a reductive group
then H is a parabolic subgroup of G.

Proof. Since H ⊆ PG(λ), we have to prove that PG(λ) ⊆ H. By Chevalley’s theorem, there

exists an overconvergent F∞-isocrystal (N †,Φ†,∞
N ) ∈ ⟨M†,Φ†,∞

M ⟩ and a rank 1 sub-F∞-isocrystal
(L,Φ∞

L ) ⊆ (N ,Φ∞
N ), such that H is the stabiliser of the line

L := ωη,Qur
p
(L,ΦL) ⊆ ωη,Qur

p
(N ,ΦN ) := V.



28 MARCO D’ADDEZIO

We have to prove that PG(λ) stabilises L. Let (L,ΦL) be the †-hull of (L,ΦL) ⊆ (N ,ΦN ) and

write L for ωη,Qur
p
(L,ΦL). We denote by s the slope of (L,ΦL) and by V ≤s ⊆ V the subspace of

slope smaller or equal than s. Since MS(X) is satisfied, we know that L = S1(L) = S1(L), which
implies that L = L∩ V ≤s. Since L ⊆ N admits by definition a †-extension, PG(λ) stabilises L. On

the other hand, PG(λ) stabilises V
≤s because (N †,Φ†,∞

N ) is an element in ⟨M†,Φ†,∞
M ⟩. This implies

that PG(λ) stabilises L, thus PG(λ) ⊆ H as we wanted. If G is reductive, H = PG(λ) is parabolic
by [Saa72, Prop. 2.2.5, page 223]. □

Using Proposition 4.4.2 we deduced the following technical result.

Proposition 4.4.3 ([D’Ad23, Prop. 4.3.5]). Let X be a smooth geometrically connected variety over

k such that every dense open U ⊆ X satisfies MS(U) and let (M†,Φ†
M) be an overconvergent Fn-

isocrystal over X. If (L,Φ∞
L ) ∈ ⟨M,Φ∞

M⟩ is a †-extendable rank 1 F∞-isocrystal, then (L†,Φ†,∞
L )

is in ⟨M†,Φ†,∞
M ⟩.

In turn, this gives a way to determine G(M, η) knowing G(M†, η) and G(M,Φ∞
M, η).

Corollary 4.4.4. Under the assumptions of Proposition 4.4.3, the group G(M, η) is equal to the
intersection G(M†, η) ∩G(M,Φ∞

M, η)⊗Qur
p
K.

Proof. Since constant F∞-isocrystals are †-extendable, Proposition 4.4.3 implies that

G(M,Φ∞
M, η)cst = G(M†,Φ†,∞

M , η)cst.

We deduce that the left square of the diagram in Proposition 4.2.9 is cartesian. To get the final
result we extend the scalars of the cartesian square from Qur

p to K. Indeed, thanks to Proposition

4.2.11, we know that G(M, VM, η)⊗Qur
p
K = G(M, η) and G(M†, VM, η)⊗Qur

p
K = G(M†, η). □

4.5. A Lefschetz theorem. The main issue to reduce Theorem 4.1.4 to the case of curves is due
to the existence of wild ramification in positive characteristic. One would like to find a smooth
connected curve C ⊆ X such that for every overconvergent isocrystalM† over X, the Tannakian
category ⟨M†⟩ spanned by M† is equivalent to the Tannakian category ⟨M†|C⟩ spanned by the
restriction of M† to C. This is possible, for example, for local systems in characteristic 0, or
for tamely ramified ℓ-adic lisse sheaves in positive characteristic (see [Esn17]). The failure of the
existence of such a nice curve for general ℓ-adic lisse sheaves is already clear for A2

k (see [ibid., Lem.
5.4]). On the other hand, if rather than considering all the objects at the same time one focuses
on one object at a time, then such a nice curve exists over finite fields both for ℓ-adic lisse sheaves
and overconvergent Fn-isocrystals (see [Kat99, Lem. 6 and Thm. 8] and [AE19, Thm. 3.10]).
We extended this result to docile overconvergent Fn-isocrystals over general perfect fields, namely
those overconvergent Fn-isocrystals which admit a log-extension with nilpotent residues.

Theorem 4.5.1 ([D’Ad23, Thm. 4.4.3]). Let Y ⊆ Pd
k̄
be a smooth connected projective variety

of dimension at least 2 and let D ⊆ Y be a simple normal crossing divisor. If (M†,Φ†
M) is an

overconvergent Fn-isocrystal over X := Y \D docile along D, then there exists a smooth connected
curve C ⊆ X such that the restriction functor ⟨M†⟩ → ⟨M†|C⟩ is an equivalence of categories.
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This theorem is obtained by a combination of various Lefschetz-type results. One of the main
ingredients is [AE19, Cor. 2.4], proven by Abe–Esnault, which gives a class of curves C such that
the restriction functor ⟨M†⟩ → ⟨M†|C⟩ is fully faithful. To prove Theorem 4.5.1, we show that
for at least one of these curves the restriction functor is also essentially surjective. This condition
can be tested on rank 1 objects, which have the advantage of coming from p-adic characters of
the étale fundamental group and they are easier to extend from C to X. The difficult part is to
impose that the extended characters come from overconvergent Fn-isocrystals. In our proof, this
is done by combining Proposition 4.4.3 and the following lemma on the ramification of rank 1 lisse
Qp-sheaves.

Lemma 4.5.2. Let X be a smooth connected variety over k, D ⊆ X an irreducible divisor and V a
lisse Qp-sheaf over X \D. There exists a dense smooth open D′ ⊆ D and a conic closed subscheme
Z ⊆ TX ×X D′ of codimension 1 at every fibre which satisfies the following property.

RV(Z) : Let C ⊆ X be a smooth curve not contained in D and intersecting D′ at
some closed point x such that TCx is not contained in Zx. For every rank 1 lisse
sheaf L ∈ ⟨V⟩ ramified at D, L|C is ramified at x.

Interestingly, in order to use Proposition 4.4.3 we need Theorem 4.1.4 for curves. Therefore, the
proofs of Theorem 4.1.4 and Theorem 4.5.1 are intrinsically intertwined.

5. The local enhancement of the conjecture

5.1. Statement and strategy of the proof. Let X be a smooth irreducible variety over a perfect
field with a closed point x and let (M†,ΦM†) be a semi-simple overconvergent F -isocrystal over X
with constant Newton polygon. Since the Newton polygon is constant, the associated F -isocrystal
(M,ΦM) admits the slope filtration. Thanks to the parabolicity conjecture, we know that if M†

is a semi-simple overconvergent F -isocrystal, then G(M, x) ⊆ G(M†, x) is a parabolic subgroup
P ⊆ G(M†, x). By the Levi decomposition, we can write P as the semi-direct product U ⋊L with
U the unipotent radical and L a Levi subgroup of P . The group L is isomorphic to the monodromy
group of the graded object associated to (M,ΦM). By [BM90, Thm. 2.4.1] and the invariance of
the étale site with respect to the perfection morphism Xperf → X, the algebraic group L is also
isomorphic to the monodromy group ofM|Xperf . In this section we want to explain how U can be
obtain as well as the monodromy group of a certain base change ofM.

Let X/x be the formal completion of X at x and write G(M/x) for the monodromy group of the

restriction ofM to X/x.

Theorem 5.1.1 ([DvH22, Thm. 3.4.4]). The monodromy group G(M/x, x) of the restriction of

M to X/x is the unipotent radical of the monodromy group G(M, x).

WhenM is the crystalline Dieudonné-module of an ordinary p-divisible group this result is proved
by Chai by doing explicit computations with Serre–Tate coordinates. Our proof builds instead on
the techniques developed in [D’Ad23] and uses new descent results for isocrystals from [Dri22],[Mat22].

Since X/x is geometrically simply connected, each isocrystal underlying an isoclinic F -isocrystal
over X/x is trivial by [BM90, Thm. 2.4.1]. This already implies that G(M/x, x) is unipotent. To
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relate G(M/x, x) and the unipotent radical of G(M, x), we pass through the respective generic
points.

Write k for the function field of X and kx for the function field of X/x. We first prove in Theorem
5.2.1 that passing from X to Spec(k) we do not change the monodromy group of M, as in the
étale setting. Then we show that if we extend k to ksep the monodromy group ofM becomes the
unipotent radical of G(M, x) (Proposition 5.4.2). This means that the extension of scalars from
k to ksep kills precisely a Levi subgroup of G(M, x). Subsequently, using the fact that the field
extension k ⊆ kx is separable, we show that when we extend F -isocrystals from ksep to ksepx , their
slope filtration does not acquire new splittings (Proposition 5.3.5). This is enough to prove that

the local monodromy group G(M/x, x) is the same as the monodromy group over ksep. By the

previous part of the argument we then deduce that G(M/x, x) is precisely the unipotent radical of
G(M, x).

5.2. Monodromy group at the generic point. As we mentioned, in the previous section, we
proved Theorem 5.1.1 passing through the generic point η ∈ X. For this purpose we proved the
following result of independent interest.

Theorem 5.2.1 ([DvH22, Thm. 3.2.8]). Let X be an irreducible Noetherian Frobenius-smooth
scheme over Fp. If (M,ΦM) is an F -isocrystal over X with slope filtration, then G(M, ηperf) =

G(Mη, η
perf).

Proof. Let K be the fraction field of W (κ) with κ the field of constants of X and let K ′ be the
fraction field of the ring of Witt vectors of ηperf . Thanks to [Sta08, Prop. 3.1.8] applied with
F = K,F ′ = K, and F ′′ = K ′, it is enough to prove that ⟨M⟩ → ⟨Mη⟩ is fully faithful and sends
semi-simple objects to semi-simple objects. The first part is proven in Theorem 3.3.4 and does not
need the assumption on the slope filtration. For the second part we have to prove that for every
irreducible N ∈ ⟨M⟩, the base change Nη is semi-simple.

Since N is irreducible, it is a subquotient of M⊗m ⊗ (M∨)⊗n for some m,n ≥ 0 and by the
assumption M⊗m ⊗ (M∨)⊗n can be endowed with a Frobenius structure with slope filtration.
After taking the sth-power of the Frobenius structure for some s > 0 and making a Tate twist,
we may further assume that N appears in the unit-root part of an F s-isocrystal. Therefore,
taking a Jordan–Hölder filtration, we may assume that N is a subquotient of an isocrystal M′

which admits a unit-root F s-structure ΦM′ such that (M′,ΦM′) is semi-simple. By [BM90, Thm.
2.4.1], the F s-isocrystal (M′,ΦM′) corresponds to a semi-simple lisse Qps-sheaf over X. By the
regularity of X, the lisse sheaf remains semi-simple when restricted to the generic point. This
implies that (M′

η,ΦM′
η
) is semi-simple. To conclude we have to prove that M′

η is semi-simple

as well. Let N ′
η ⊆ M′

η be the socle of M′
η, namely the sum of all the irreducible subobjects

of M′
η. By maximality, N ′

η is stabilised by the F s-structure, thus it upgrades to a subobject
(N ′

η,ΦN ′
η
) ⊆ (M′

η,ΦM′
η
). By semi-simplicity, the inclusion admits a retraction, which induces in

particular a retraction of N ′
η ⊆M′

η. This implies that N ′
η =M′

η, as we wanted. □

5.3. Descent for isocrystals. We see now various descent results that we will need in the next
section for (F -)isocrystals. Let f : Y → X be a pro-étale Π-cover of Noetherian Frobenius-smooth
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schemes over Fp where Π is a profinite group and let y ∈ Y (Ω) be an Ω-point of Y with Ω a perfect
field.

Lemma 5.3.1. For every isocrystal M over X, the maximal trivial subobject of f∗M descends
to a subobject N ⊆ M. Moreover, if M is endowed with a Frobenius structure ΦM, the inclusion
N ⊆ M upgrades to an inclusion (N ,ΦN ) ⊆ (M,ΦM) of F -isocrystals and (N ,ΦN ) is a direct
sum of isoclinic F -isocrystals.

Proof. Since the cover Y → X is a quasi-syntomic cover, it satisfies descent for isocrystals thanks
to [Dri22, Prop. 3.5.4] (see also [Mat22] or [BS23, §2]). By the assumption,

Y ×X Y ≃ lim←−
U⊆Π

(Y ×X Y )U

where the limit runs over all the open normal subgroups of Π and (Y ×X Y )U :=
∐

[γ]∈Π/U Y[γ] is

a disjoint union of copies of Y . The group Π acts on Y ×X Y in the obvious way. Since f∗M
comes from X, it is endowed with a descent datum with respect to the cover Y → X. This datum
consists of isomorphisms γ∗M(Y×XY )U ≃ M(Y×XY )U for each U ⊆ Π and γ ∈ Π. The functor γ∗

sends trivial objects to trivial objects, which implies that the descent datum restricts to a descent
datum of T , the maximal trivial subobject of f∗M. Therefore, T descends to a subobject N ⊆M,
as we wanted. IfM is endowed with a Frobenius structure, then it induces a Frobenius structure
on each isocrystalM(Y×XY )U and this structure preserves each maximal trivial subobject of given
slope. This implies that the descended object N ⊆ M is stabilised as well by the Frobenius and
the induced Frobenius structure satisfies the desired property. □

Proposition 5.3.2. Let (M,ΦM) be an F -isocrystal with the slope filtration and write ν for
the associated Newton cocharacter. If Ru(G(M, f(y))) ⊆ Uν and GrS•(f

∗M) is trivial, then
G(f∗M, y) = Ru(G(M, f(y))).

Proof. Since GrS•(f
∗M) is trivial, the group G(f∗M, y) is a unipotent subgroup of G(M, f(y))

sitting inside Uν . Therefore, we are in the situation of [D’Ad23, Prop. 3.1.2] and we have to prove
that (ii) is satisfied. This amounts to show that for every m,n ≥ 0, the maximal trivial subobject
T ⊆ f∗(M⊗m ⊗ (M∨)⊗n) descends to a semi-simple isocrystal over X. By Lemma 5.3.1, we know
that T descends to an isocrystal N which is the direct sum of isocrystals which can be endowed
with an isoclinic Frobenius structure. Since Ru(G(M, f(y))) is contained in Uν , we deduce that N
is semi-simple, as we wanted. □

Lemma 5.3.3. If k′/k is a separable field extension and k′ admits a finite p-basis, then k′ ⊗k k
′

admits a finite p-basis as well.

Proof. Thanks to [Mat70, Thm. 26.6], the field k admits a finite p-basis t1, · · · , td which extends
to a finite p-basis t1, · · · , td, u1, · · ·ue of k′. We claim that Γ := {ti ⊗ 1}i ∪ {ui ⊗ 1}i ∪ {1⊗ ui}i is a
finite p-basis of k′ ⊗k k

′. It is clear from the construction that the elements of Γ generate k′ ⊗k k
′

over (k′ ⊗k k
′)p. On the other hand, the exact sequence

0→ Ω1
k/Fp
⊗k (k

′ ⊗k k
′)→ Ω1

k′⊗kk′/Fp
→ (Ω1

k′/k ⊗k k
′)⊕ (k′ ⊗k Ω

1
k′/k)→ 0

shows that the elements dγ with γ ∈ Γ form a basis of the free module Ω1
k′⊗kk′/Fp

. We deduce the

p-independence of the elements of Γ by arguing as in [Stacks, Tag 07P2]. □
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Lemma 5.3.4. Let X be a Frobenius-smooth scheme over Fp. For every F -isocrystal (M,ΦM)
with a locally-free lattice and constant Newton polygon such that all the slopes are different from 0,
the vector space of global sections fixed by the Frobenius structure is trivial.

Proof. Since X is Frobenius-smooth, by [BM90, §1.3.5.ii] the global sections of any isocrystal over
X embed into the global sections of the base change to Xperf . Over Xperf we argue as in the
proof of [Kat79, Thm. 2.4.2], namely we assume Xperf = Spec(A) affine and we embed A into a
product of perfect fields. This reduces the problem to the case of perfect fields, where the result is
well-known. □

Proposition 5.3.5. Let k ⊆ k′ a separable extension of characteristic p fields with finite p-basis
and let (M,ΦM) be a free F -isocrystal over k with slope filtration S• of length n. IfMk′ admits a
Frobenius-stable splitting of the form Nk′ ⊕ Sn−1(Mk′) with Nk′ some subobject of Mk′, the same
is true forM.

Proof. Since Speck′ → Speck is a quasi-syntomic cover, it satisfies descent for isocrystals thanks to
the descent results of Drinfeld and Mathew in [Dri22], [Mat22] (see [BS23, Thm. 2.2]). Therefore, in
order to descend Nk′ to k it is enough to show that the splitting Nk′⊗kk′⊕Sn−1(Mk′⊗kk′) is unique.
Suppose that N ′

k′⊗kk′
⊕ Sn−1(Mk′⊗kk′) was a different splitting. Then there would exist a non-

trivial Frobenius-equivariant morphism N ′
k′⊗kk′

→ Sn−1(Mk′⊗kk′). In other words, the F -isocrystal

Hom(N ′
k′⊗kk′

, Sn−1(Mk′⊗kk′)) would have a non-trivial Frobenius-invariant global section. Since

the slopes of Hom(N ′
k′⊗kk′

, Sn−1(Mk′⊗kk′)) are all negative by definition and k′⊗k k
′ admits a finite

p-basis by Lemma 5.3.3, this would contradict Lemma 5.3.4. □

5.4. Proof of the local enhancement. We are ready to put all the previous results together
and prove Theorem 5.1.1. Let X be a smooth irreducible variety over a perfect field and let x be a
closed point of X. We denote by k the function field of X and by kx the function field of X/x. We
also write ηsep (resp. η̄) for the points over the generic point of X associated to a separable (resp.
algebraic) closure of k.

Lemma 5.4.1. The fields k and kx have a common finite p-basis. In particular, k ⊆ kx is a
separable field extension.

Proof. By [Mat70, Thm. 26.7], it is enough to show that Ω1
k/Fp
⊗k kx = Ω1

kx/Fp
. Write A for the

local ring of X at x and A∧
x for the completion with respect to the maximal ideal mx. Since A is

regular, thanks to [Mat70, Thm. 30.5 and Thm. 30.9], we deduce that Ω1
A/Fp

⊗A A
∧
x = Ω1

A∧
x /Fp

.

We get the desired result after inverting mx − {0}. □

Proposition 5.4.2. If (M,ΦM) is an F -isocrystal over X such that Ru(G(M, η̄)) ⊆ Uν , then
G(Mηsep , η̄) = Ru(G(M, η̄)).

Proof. By Theorem 5.2.1 we have that G(M, η̄) = G(Mη, η̄), so that we are reduced to prove the
statement for G(Mη, η̄). Note that the cover f : ηsep → η is a pro-étale Gal(ksep/k)-cover and
GrS•(f

∗Mη) is trivial because η
sep is simply connected. This shows that we can apply Proposition

5.3.2 and deduce the desired result. □

Proposition 5.4.3. If (M,ΦM) is an F -isocrystal over X coming from an irreducible overcon-

vergent F -isocrystal with constant Newton polygon, then H0(X/x, (S1(M))/x) = H0(X/x,M/x).
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Proof. By Galois descent we may assume that the ring of constants of X is an algebraically closed
field. The inclusion H0(X/x, (S1(M))/x) ⊆ H0(X/x,M/x) is an inclusion of F -isocrystals over
κ. We suppose by contradiction that this is not an equality. Let qr > q1 be the greatest slope
appearing in H0(X/x,M/x) and let v be a non-zero vector such that Φn

M/x(v) = pqrnv for n≫ 0.

Write (M̃,ΦM̃) for the base change of (M,ΦM) to ηsep.

By the parabolicity conjecture Ru(G(M, η̄)) is contained in Uν because (M,ΦM) comes from an
irreducible overconvergent F -isocrystal. Proposition 5.4.2 then implies that the monodromy group
G(M̃, η̄) is equal to G(M, η̄)∩Uν . Therefore, the line spanned by v determines a rank 1 subobject

L̃ ⊆ Sr(M̃)/Sr−1(M̃) stabilised by the Frobenius. The preimage of this isocrystal in Sr(M̃),

denoted by Ñ , is kept invariant by the Frobenius and sits in an exact sequence

0→ Sr−1(M̃)→ Ñ → L̃ → 0.

Since (M,ΦM) comes from an irreducible overconvergent F -isocrystal, the sequence does not admit
a Frobenius-equivariant splitting by [D’Ad23, Thm. 4.1.3]. By Proposition 5.3.5, the base change
of this extension to ksepx does not split as well. This leads to a contradiction since v is a vector in
H0(X/x,M/x) which produces a non-trivial global section of Ñ ⊆ M̃. □

We write ηx for the generic point of X/x and G(M/x, ηperfx ) for the monodromy group ofM/x with
respect to the perfection of ηx. We can finally prove the following theorem.

Theorem 5.4.4 ([DvH22, Thm. 3.4.4]). If (M,ΦM) comes from a semi-simple overconvergent
isocrystal endowed with a Frobenius structure with constant Newton polygon, then

G(M/x, ηperfx ) = Ru(G(M, ηperfx )).

Proof. Write G for the group G(M, η) and V for the induced G-representation. By the parabolicity
conjecture we have that Ru(G) is contained in Uν where ν is the Newton cocharacter. Since

X/x is geometrically simply connected we deduce that GrS•(M)/x is trivial. This implies that

G(M/x, ηperfx ) ⊆ Ru(G) ⊆ Uν . Therefore, in order to apply the criterion of [D’Ad23, Prop. 3.1.2] it

is enough to show that for every N ∈ ⟨M⟩, the space of global sections of N /x is the same as the
fibre at x of some direct sum of isoclinic subobjects of N . To prove this, we may assume that N
can be endowed with a Frobenius structure ΦN and (N ,ΦN ) is irreducible. Thanks to Proposition

5.4.3, we deduce that the fibre of S1(N ) at x is the same as H0(X/x,N /x). This yields the desired
result. □

6. The Hecke orbit conjecture

6.1. Strategy of the proof. The overall structure of the proof of Theorem 1.3.2 is similar to the
proof of the ordinary Hecke orbit conjecture in [vH24] and is based on a strategy implicit in the
work of Chai–Oort and sketched to us by Chai in a letter.

To explain the proof we first need to establish some notation. Let Z ⊆ C be a reduced closed
subvariety that is stable under the prime-to-p Hecke operators, as in the statement of Theorem
1.3.2. The central leaf is contained in a Newton stratum ShG,U,[b] ⊆ ShG,U which has an associated
Newton fractional cocharacter

νb : G1/∞
m → G.
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Attached to this cocharacter is a parabolic subgroup Pνb with unipotent radical Uνb .

Let Zsm be the smooth locus of Z. Then Corollary 3.3.3 of [vH24] tells us that the monodromy group
of the crystalline Dieudonné module M of the universal p-divisible group over Zsm is isomorphic
to Pνb . Theorem 5.1.1 then tells us that for x ∈ Zsm(Fp), the monodromy group of M both over

Z/x and over C/x is equal to Uνb . We want to show that Z/x = C/x, which allows us to conclude
that Zsm and hence Z are equidimensional of the same dimension as C.

For this we construct generalised Serre–Tate coordinates on the formal completion C/x. To be
precise, we show that there is a Dieudonné–Lie Z̆p-algebra

9 a+ over Z̆p governing the structure of

C/x. For example, if ShG,U is a Siegel modular variety and C is the ordinary locus, then C/x is a

p-divisible formal group by the classical theory of Serre–Tate coordinates, and a+ = D(C/x) is its
Dieudonné module, equipped with the trivial Lie bracket.

We note that C/x is a formal homogeneous for a formal group Π̃(a) attached to the nilpotent

Dieudonné–Lie Q̆p-algebra a := a+[1p ]. The stabiliser is a profinite group scheme Π(a+) over Fp.

The formal scheme underlying Π̃(a) is the universal cover of the p-divisible group associated to a+.
In the Siegel case, this unipotent formal group is the identity component of the group of self-quasi
isogenies of the p-divisible group Ax[p

∞] which are compatible with the polarisation up to a scalar.

The Dieudonné–Lie Q̆p-algebra a turns out to be isomorphic to Lie(Uνb) equipped with a natural

F -structure. For a Dieudonné–Lie Q̆p-subalgebra b ⊆ a, we constructed a formally smooth closed

formal subscheme Z(b+) ⊆ C/x. This formal subscheme is again a formal homogeneous space under

a unipotent formal group Π̃(b) ⊆ Π̃(a). Chai and Oort proved that Z/x admits such a description.

Theorem 6.1.1 ([CO22]). There is an F -stable Lie subalgebra b ⊆ a such that Z/x = Z(b+).

To prove Theorem 1.3.2, we are then reduced to show that the restriction ofM to formal subschemes
Z(b+) ⊆ C/x for b ⊊ a have smaller monodromy.

Theorem 6.1.2 (Theorem 6.5.1). The Lie algebra of the monodromy group of M over Z(b+) is
contained in b.

By the previous discussion, we know that the Lie algebra of the monodromy group ofM over Z/x

is equal to a. Therefore, if Z/x = Z(b+) for some b, then a ⊆ b ⊆ a, so that Z/x = Z(b+) =

Z(a+) = C/x.

The proof of Theorem 6.1.2 uses the Cartier–Witt stacks of Drinfeld [Dri20] and Bhatt–Lurie [BL22]

in combination with the interpretation of C/x as a formal deformation space of the trivial torsor
for the profinite group scheme Π(a+), due to Chai–Oort [Cha20] in the PEL case. In particular, we

show that the closed formal subscheme Z(b+) ⊆ C/x can be identified with the formal deformation
space of the trivial torsor for a certain closed subgroup Π(b+) ⊆ Π(a+).

Remark 6.1.3. The unipotent formal group Π̃(a) is closely related to the “unipotent group dia-

mond” G̃>0
b introduced in Chapter III.5 of Fargues–Scholze, [FS21]. To be precise, there should be

an isomorphism Π̃(a)♢ ≃ G̃>0
b of v-sheaves in groups over Spd(Fp).

9See Definition 6.2.1.
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6.2. Dieudonné–Lie algebras. One of the key tools we use in the proof is a generalisation of
Serre–Tate coordinates. This is done using the new notion of Dieudonné–Lie algebras. In §6.3 we
will see how to attach to a certain class of Dieudonné–Lie algebras, that we call plain Dieudonné–Lie
algebras, a formal homogeneous space.

We write Z̆p for W (Fp) and Q̆p for its fraction field. We also write φ for the Frobenius lift on both

Z̆p and Q̆p.

Definition 6.2.1. A Dieudonné–Lie Z̆p-algebra is a triple (a+, φa+ , [−,−]) where (a+, φa+) is a

Dieudonné module over Fp (see Definition 3.4.7) and

[−,−] : a+ × a+ → a+

is a Lie bracket such that the following diagram commutes

a+[1p ]× a+[1p ] a+[1p ]× a+[1p ]

a+[1p ] a+[1p ].

[−,−]

φa+×φa+

[−,−]

φa+

A morphism of Dieudonné–Lie Z̆p-algebras is a Z̆p-linear map f : a+ → b+ that respects the Lie
brackets and induces a homomorphism of Dieudonné modules. If f is injective with finite cokernel
we say that f is an isogeny. We write X(a+) for the p-divisible group attached to the Dieudonné

module (a+, φa+). We also say that a Dieudonné–Lie Z̆p-algebra is completely slope divisible if the
underlying Dieudonné module is so (see Definition 3.6.1).

Similarly, a Dieudonné–Lie Q̆p-algebra is a triple (a, φa, [−,−]) where (a, φa) is a rational Dieudonné

module over Fp and [−,−] is a Lie bracket of a satisfying the same compatibility. We write

(a, φa, [−,−])

for the Dieudonné–Lie Q̆p-algebra obtained from a Dieudonné–Lie Z̆p-algebra

(a+, φa+ , [−,−])
by inverting p. We also denote by X̃(a) the universal cover of the p-divisible group associated to
an integral lattice of (a, φa). This assignment does not depend on the choice of the lattice. We
will very often omit the Frobenius structure and the Lie bracket in the notation of Dieudonné–Lie
algebras.

Remark 6.2.2. Alternatively, Dieudonné–Lie Z̆p-algebras (resp. Q̆p-algebras) can be defined as
the Lie algebra objects in the symmetric monoidal category of F -crystals (resp. F -isocrystals) over
Fp such that the underlying F -crystal (resp. F -isocrystals) is a Dieudonné module.

Example 6.2.3. The first example of a Dieudonné–Lie Z̆p-algebra is the Dieudonné module of the

internal-Hom p-divisible group HY attached to a p-divisible group Y over Fp, denoted by D(HY ).
Indeed, the Lie bracket coming from the commutator bracket on TpHY = Hom(Y, Y ), induces an
φ-equivariant Lie bracket on a. The Lie bracket onHom(Y, Y ) clearly sends the identity component

Hom(Y, Y )◦ to itself. This leads to our second example of a Dieudonné–Lie Z̆p-algebra, the one
induced on D(H◦

Y ).
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Given a Dieudonné–Lie Z̆p-algebra, there is also a natural procedure to get many others isogenous

Dieudonné–Lie Z̆p-algebras by using the Frobenius structure. Let us see this more in details, as it
will play an important role.

Construction 6.2.4. For a Dieudonné–Lie Z̆p-algebra (a+, φa+ , [−,−]) and n ∈ Z, we define

Φn(a+) to be the Z̆p-submodule φn
a+(a

+) ⊆ a. This Z̆p-submodule is preserved by the Frobenius

and the Lie bracket of a. We then get on Φn(a+) a Dieudonné–Lie Z̆p-algebra structure. Note that

φ−n
a induces an isomorphism Φn(a+)

∼−→ a+,(pn) of Dieudonné–Lie Z̆p-algebras.

Lemma 6.2.5. For n ≥ 0, there is a natural exact sequence of fpqc sheaves

0→ TpX(a+)→ TpX(Φn(a+))→ X(a+)[Fn]→ 0.

Proof. Thanks to the isomorphism φ−n
a : Φn(a+)

∼−→ a+,(pn), this is equivalent to proving that we
have an exact sequence

0→ TpX(a+)→ TpX(a+)(p
n) → X(a+)[Fn]→ 0,

where TpX(a+) → TpX(a+)(p
n) is induced by the nth-power of the (relative) Frobenius of X(a+).

The result then follows by a classical diagram chasing, using the fact that the Frobenius of X(a+)
is faithfully flat. □

The fundamental lemma we will use very often to study Dieudonné–Lie Q̆p-algebras and reduce
ourself to the abelian case is the following one.

Lemma 6.2.6. Let a be a Dieudonné–Lie Q̆p-algebra where all the slopes are negative. Let µ1 be

the smallest slope of a and let b ⊆ a be an F -stable Q̆p-subspace that is isoclinic of that slope. Then
b is contained in the centre of a.

Proof. There are no nonzero F -equivariant maps b⊗ a→ a because, by assumption, all the slopes
of b⊗ a are strictly smaller than the slopes of a. Hence the restriction of the Lie bracket to b× a
is trivial. □

6.2.1. Integrability. In general, for Dieudonné–Lie Z̆p-algebras, the BCH formula is not well-defined.
We want to clarify here how to bypass this issue in our context. Let us first recall the formula as
presented in [Ser09, Part I, Chapter IV, §7-8]. We focus on the nilpotent setting, since it is the
only one we will need.

Definition 6.2.7. We say that a Dieudonné–Lie Q̆p-algebra (a, φa, [−,−]) is nilpotent if the under-
lying Lie algebra (a, [−,−]) is nilpotent. We also say that a Dieudonné–Lie Z̆p-algebra is nilpotent

if the associated Dieudonné–Lie Q̆p-algebra is so.

For positive integers d, n, we denote by ∆n(d) ⊆ Nn × Nn the subset of elements (r, s) ∈ Nn × Nn

with r = (r1, . . . , rn) and s = (s1, . . . , sn) such that
∑n

i=1(ri + si) = d and ri + si ̸= 0 for every i.
The BCH series can be written as

BCH(X,Y ) :=

∞∑
d=1

∞∑
n=1

∑
(r,s)∈∆n(d)

(−1)n−1 [X
r1Y s1 · · ·XrnY sn ]

dn
∏n

i=1 ri!si!
.
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If a is a nilpotent Dieudonné–Lie Q̆p-algebra, then for every a, b ∈ a, there is a well-defined element
BCH(a, b) ∈ a. Indeed, for d and n big enough the terms of the series vanish. For (Dieudonné–)Lie

Z̆p-algebras, instead, the series might not be defined when the denominators are too divisible by p.
It then makes sense to consider the following definition.

Definition 6.2.8. We say that a nilpotent Dieudonné–Lie Z̆p-algebra is integrable if for every
a, b ∈ a+, each summand

(−1)n−1 [a
r1bs1 · · · arnbsn ]
dn
∏n

i=1 ri!si!

of BCH(a, b) lies in a+.

Lemma 6.2.9. If a+ is a nilpotent Dieudonné–Lie Z̆p-algebra, then p
2a+ is an integrable Dieudonné–

Lie Z̆p-subalgebra.

Proof. Write b+ for the Dieudonné–Lie Z̆p-subalgebra p
2a+ ⊆ a+. We have to prove that for every

v, w ∈ b+, each term

(−1)n−1 [v
r1ws1 · · · vrnwsn ]

dn
∏n

i=1 ri!si!

lies in b+. By the bilinearity of the Lie bracket, we have that [b+, b+] ⊆ p2b+. Thus, by induction,
we deduce that for every e ≥ 2 and every set of elements {v1, . . . , ve} in b+, the nested bracket
[v1 · · · ve] lies in p2e−2b+. The nested bracket [vr1ws1 · · · vrnwsn ] is then an element of p2d−2b+.
Since the denominator dn

∏n
i=1 ri!si! divides (d!)

2, we get the desired result thanks to the fact that
pd−1

d! is an element of Z̆p. □

6.3. Formal homogeneous spaces. In this section we focus on the construction of the functor

Z :
{
Plain Dieudonné–Lie Z̆p-algebras

}
→
{
Formal Lie varieties over Fp

}
that was defined in [DvH22] to describe the infinitesimal behaviour of central leaves of Shimura

varieties. As we will see, Z(a+) admits by construction a transitive action of the formal group Π̃(a)
(Construction 6.3.1). Hence the name formal homogeneous space attached to a+.

Construction 6.3.1. Let a be a nilpotent Dieudonné–Lie Q̆p-algebra. The Lie bracket on a induces

a Lie bracket on X̃(a). The BCH formula defines then a formal group structure10

mLie : X̃(a)×X̃(a)→ X̃(a)

with inverse the multiplication by −1. We define Π̃(a) to be the formal group (X̃(a),mLie). The

assignment a 7→ Π̃(a) defines a functor

Π̃ :
{
Nilpotent Dieudonné–Lie Q̆p-algebras

}
→
{
Formal groups over Fp

}
.

Construction 6.3.2. If a+ is an integrable nilpotent Dieudonné–Lie Z̆p-algebra, the Lie bracket

on a+ induces a Lie bracket on TpX(a+). The formal group structure mLie on X̃(a) restricts then

10See [ibid.,§2.1] for the details on the notion of formal schemes in force.
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to a group scheme structure on TpX(a+). We denote by Π(a+) the group scheme (TpX(a+),mLie).
Note that mLie preserves pmTpX(a+) for every m ≥ 0, so that

Π(a+) = lim←−
m≥0

Πm(a+),

where Πm(a+) is the affine finite scheme X(a+)[pm] endowed with the group scheme structure
induced by mLie. This shows that Π(a

+) is a profinite group scheme.

In this case, the assignment a+ 7→ Π(a+) defines a functor

Π:
{
Integrable nilpotent Dieudonné–Lie Z̆p-algebras

}
→
{
Profinite group schemes over Fp

}
.

Remark 6.3.3. If the slopes of a are negative, then Π̃(a) is a connected affine formal group.
Similarly, in the integral situation, if the slopes of a+ are negative, then Π(a+) is a connected
profinite group scheme.

To continue our analysis, it will be convenient to work under additional assumptions on a+.

Definition 6.3.4. A plain Dieudonné–Lie Z̆p-algebra is a completely slope divisible integrable

Dieudonné–Lie Z̆p-algebra such that all the slopes are negative.

As we have seen in Construction 6.2.4, for every a+ and n ∈ Z, there is a Dieudonné–Lie Z̆p-algebra
Φn(a+), constructed using the Frobenius, which is isogenous to a+. It is easy to check that if a+ is
plain, even Φn(a+) is plain for every n.

Construction 6.3.5. Let a+ be a plain Dieudonné–Lie Z̆p-algebra. For every n ≥ 0, we write
Πn(a+) for Π(Φn(a+)) and, for m ≥ 0, we write Πn

m(a+) for Πm(Φn(a+)). There are natural maps
αn : Πn(a

+)→ Πn
n(a

+). We define Zn(a+) to be the fppf-quotient

Πn
n(a

+)/αn(Πn(a
+))

over AlgopFp
. We also write Z(a+) for the fppf-sheaf obtained as the inductive limit

lim−→
n

Zn(a+).

There is a natural action of Π̃(a) on the formal scheme Z(a+) and an equivariant map Π̃(a) →
Z(a+). We say that Z(a+) is the formal homogeneous space attached to a+.

Remark 6.3.6. By Lemma 6.2.5, if a+ is abelian, then Zn(a+) = X(a+)[Fn] and Z(a+) = X(a+).
In general, the formal scheme Z(a+) should be thought as the fpqc-quotient Π̃(a)/Π(a+) (see
[DvH22, Lem. 4.3.12]). Note also that in [ibid., Lem. 4.3.11] we prove that Z(a+) satisfies the
universal property of a quotient stack over the category of formal schemes.

We want to prove a fundamental representability result for Z(a+). For this we use a construction
that allows us to reduce many statements to the case when a+ is abelian.

Construction 6.3.7. Let a+ be a plain Dieudonné–Lie Z̆p-algebra and let µ1 be the minimal slope
of a+. The formal group structure mLie induces a morphism of affine schemes Πn

n(a
+
µ1
)×Πn

n(a
+)→

Πn
n(a

+). By Lemma 6.2.6, the group Π̃(aµ1) is in the centre of Π̃(a), thus we also get a morphism

X(a+µ1
)[Fn]× Zn(a+)→ Zn(a+)
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which endows Zn(a+) with a left action of X(a+µ1
)[Fn]. This makes Zn(a+) an fppf-torsor over

Zn(a+/a+µ1
) under the finite syntomic group scheme X(a+µ1

)[Fn].

Proposition 6.3.8. If a+ is a plain Dieudonné–Lie Z̆p-algebra, then for every n ≥ 1 the fppf-sheaf
Zn(a+) is represented by SpecRn,m where m is the dimension of X(a+) and

Rn,m := Fp[X1, · · · , Xm]/(Xpn

1 , · · · , Xpn

m ).

Moreover, the torsor Zn(a+)→ Zn(a+/a+µ1
) of Construction 6.3.7 is trivial.

Proof. We want to prove the result by induction on the number of slopes of a+. In the isoclinic
case the result follows from Proposition 2.1.2 of [Mes72]. For the inductive step, we first note that
by Construction 6.3.7, the fppf-sheaf Zn(a+) is represented by a connected scheme which is finite
and syntomic over Zn(a+/a+µ1

). The result is then obtained as a consequence of Proposition 3.6.8
of [DG70, Chapter III]. □

Corollary 6.3.9. If a+ is a plain Dieudonné–Lie Z̆p-algebra, then Z(a+) is a formal Lie variety
of the same dimension of X(a+).

By Corollary 6.3.9 we get a functor

Z :
{
Plain Dieudonné–Lie Z̆p-algebras

}
→
{
Formal Lie varieties over Fp

}
.

Note that the formal schemes Z(a+), besides having a natural action of Π̃(a), are endowed with a
special class of closed formal subschemes given by the following construction.

Construction 6.3.10 (Strongly Tate-linear subspaces). For a Dieudonné–Lie Q̆p-subalgebra b ⊆ a
we write b+ for the intersection b ∩ a+. The inclusion b+ ⊆ a+ induces a closed embedding
Z(b+) ⊆ Z(a+). Following Chai–Oort, we say that a closed formal subscheme Z ⊆ Z(a+) obtained
in this way is a strongly Tate-linear subspace, see [Cha20].

Lemma 6.3.11. The natural map Π̃(a)→ Z(a+) is an fpqc-torsor under the affine group scheme
Π(a+).

Proof. Thanks to Lemma 6.2.5, for every n ≥ 0 we have a cartesian diagram

(6.1)

Π(a+) Πn(a+)

Πn(a
+) Πn

n(a
+).

□

By diagram chasing, we deduce that Πn(a+) → Zn(a+) is a torsor for Π(a+). This yields the
desired result. □

Lemma 6.3.12. For every plain Dieudonné–Lie Z̆p-algebra a+, the natural map Π̃(a) → Z(a+)
induces an isomorphism

Π̃(a) ≃ Z(a+)perf .

Proof. For every n ≥ 0, we have the following factorisation of the nth-power of the absolute
Frobenius of Z(a+)
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Z(a+) Z(a+)

Z(Φ−n(a+)),

Fn

∼

where Z(Φ−n(a+))→ Z(a+) is induced by the natural inclusion Φ−n(a+) ⊆ a+. This implies that

Z(a+)perf = lim←−
n

Z(Φ−n(a+)).

Since
⋂

nΦ
−n(a+) = 0, we deduce that Π̃(a) → lim←−n

Z(Φ−n(a+)) is a monomorphism, thus by

[DvH22, Lem. 2.1.2] it is a closed immersion. On the other hand, Π̃(a)→ lim←−n
Z(Φ−n(a+)) is flat

since for every n ≥ 0 the map Π̃(a)→ Z(Φ−n(a+)) is so. This implies the desired result. □

6.4. Deformation spaces as formal homogeneous spaces. For p-divisible groups Y and Z
over a perfect field κ, Chai and Oort constructed finite group schemes

Homst(Y [pn], Z[pn]) ⊆ Hom(Y [pn], Z[pn]),

where Hom(Y [pn], Z[pn]) is the sheaf of homomorphisms from Y [pn] to Z[pn]. The natural maps

πn : Homst(Y [pn], Z[pn])→ Homst(Y [pn+1], Z[pn+1])

make the inductive limit

lim−→
n

Homst(Y [pn], Z[pn])

a p-divisible group over κ, denoted by HY,Z . This is called the internal-Hom p-divisible group of Y
and Z. When Y = Z we denote this p-divisible group by HY . If Y is endowed with a G-structure
for some reductive group G, one can also define the variant HG

Y ⊆ HY looking at endomorphisms
which preserve the G-structure (see [DvH22, §4.4]).

Thanks to [CS17, Lem. 4.1.7], the scheme-theoretic p-adic Tate module of HY,Z is isomorphic to
the group scheme Hom(Y,Z) of homomorphisms from Y to Z. By [ibid., Lem 4.1.8], there is also
an isomorphism

D(HY,Z)[
1
p ] = Hom(D(Y )[1p ],D(Z)[

1
p ])≤0,

where Hom(D(Y )[1p ],D(Z)[
1
p ]) denotes the internal-Hom in the category of F -isocrystals and (−)≤0

denotes the operation of taking the subspace of slope ≤ 0. By the proof of Lemma 4.1.8 of [ibid.]
there is a canonical isomorphism of formal group schemes

H̃Y,Z = Hom(Y, Z)[1p ],(6.2)

where H̃Y,Z is the universal cover of HY,Z .
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6.4.1. If Y is a completely slope divisible p-divisible group over Fp, then the deformation space
Def sus(Y ) of the trivial Aut(Y )-torsor admits a closed immersion into the deformation space
Def(Y ) of Y , see [Cha20, Lem. 3.6, Thm. 4.3]. Its image is identified with the subspace of
deformations of Y that are fpqc locally isomorphic to the constant deformation of Y . It follows from
[Kim19, §5] that there is an action of Aut(Ỹ )◦ on Def sus(Y ) and an equivariant map Aut(Ỹ )◦ →
Def sus(Y ) which is an Aut(Y )◦-torsor in the fpqc topology. Essentially, one can think Def sus(Y )
as the fpqc quotient

Aut(Ỹ )◦/Aut(Y )◦.

In what follows we want to explain how Def sus(Y ) is related to the formal homogeneous spaces of
§6.3.

Remark 6.4.1. If Y = Y1 ⊕ Y2 has two slopes, then Aut(Ỹ )◦ is isomorphic to H̃Y1,Y2 and
Aut(Y )◦ ≃ TpHY1,Y2 so that Def sus(Y ) ≃ HY1,Y2 . This gives Def sus(Y ) the structure of a p-
divisible formal group. When Y is ordinary, then Def sus(Y ) = Def(Y ) and the formal group
structure on Def(Y ) is the one coming from the classical Serre–Tate coordinates, see [vH24, §4].

6.4.2. Let Y be the universal p-divisible group over the sustained deformation space Def sus(Y ),
let Z ⊆ Def sus(Y ) be a formally smooth closed subscheme, and let G(MZ) be the monodromy
group11 of the isocrystalM = D(Y)[1p ] restricted to Z. We have a natural inclusion

Lie(G(MZ)) ⊆ D(H◦
Y )[

1
p ] =: aY

of nilpotent Lie algebras. In turn, aY is naturally a Lie subalgebra of Lie(GL(D(Y )))[1p ]. SinceM
has the structure of an F -isocrystal we get, by [Cre92a, §2.2], an isomorphism

G(MZ)
(p) → G(MZ),

which induces an isomorphism

Lie(G(MZ))
(p) → Lie(G(MZ))

compatible with the F -structure on D(H◦
Y )[

1
p ]. In particular Lie(G(MZ)) ⊆ aY is an F -stable Lie

subalgebra.

6.4.3. If we consider a+Y = D(H◦
Y ) as a nilpotent Dieudonné–Lie Z̆p-algebra, then it is completely

slope divisible. Nonetheless, it is generally not integrable. For simplicity, in what follows we will
assume a+Y integrable, which happens, for example, when the length of the slope filtration is smaller
than the prime p.

The exponential morphism E : X̃(aY ) = H̃◦
Y → Aut(Ỹ )◦ sending f 7→

∑∞
i=0 f

i/i! defines an iso-
morphism of formal schemes. This isomorphism identifies the formal group law mLie with the
composition group law, so that we get an isomorphism

E : Π̃(aY )
∼−→ Aut(Ỹ )◦

11The monodromy group is taken with respect to the closed point of Z. We remove in this section the choice of

the point in the notation.
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of formal group schemes. Under the assumption that a+Y is integrable, this isomorphism restricts
to an isomorphism of profinite group schemes

E : Π(a+Y )
∼−→ Aut(Y )◦.

Finally, this gives an isomorphism

E : Z(a+Y )
∼−→ Def sus(Y ).

What we gained from this isomorphism is that we have now a notion of strongly Tate-linear subspace
of Def sus(Y ) (see §6.3.10). We expect that the monodromy of the restriction ofM to these special
subspaces should be determined by the Lie algebra structure of (b, [−,−]) ⊆ (aY [−,−]). More
precisely, we expect the following to be true.

Conjecture 6.4.2 (D’A–van Hoften). For every Dieudonné–Lie Q̆p-subalgebra b ⊆ aY , we have

Lie(G(MZ(b+))) = b.

If we denote by U(b) ⊆ GL(D(Y ))[1p ] the unipotent subgroup attached to a nilpotent Lie subalgebra

b ⊆ Lie(GL(D(Y )))[1p ]. Conjecture 6.4.2 is then saying that G(MZ(b+)) = U(b).

Example 6.4.3. Let the notation be as in §1.3.1 and consider a central leaf C lying in a Newton
stratum associated to a non-central cocharacter νb. Take a point x ∈ C and suppose that the
associated p-divisible group Y is completely slope divisible (every Newton stratum admits such a

leaf). If b+ := D(HG,◦
Y ), then Z(b+) ⊆ Def sus(Y ) can be identified with C/x ⊆ Def sus(Y ). In this

case, by [vH24, Cor. 3.3.5]12, the unipotent radical of the monodromy group G(MC) is isomorphic
to Uνb = U(b). Thanks to Theorem 5.4.4, we deduce that U(b) is indeed the monodromy group of
M over Z(b+).

As a special case, if Y is of height h and dimension d, then Def sus(Y ) can be realised as the
formal neighborhood of a central leaf in a PEL type unitary Shimura variety of signature (h− d, d)
associated to an imaginary quadratic field E in which p splits. In particular, we know that the
monodromy group ofM over Def sus(Y ) is isomorphic to the unipotent group corresponding to the
nilpotent Lie algebra D(H◦

Y )[
1
p ] = aY .

6.5. Boundedness of the monodromy. In this section we will prove a containment of Con-
jecture 6.4.2. Let Y be a completely slope divisible p-divisible group over Fp and let Y be the
universal p-divisible group over the sustained deformation space Def sus(Y ). Let a+ = D(H◦

Y ) be
the Dieudonné–Lie algebra associated to the internal-Hom p-divisible group of Y and let b ⊆ a be
a Dieudonné–Lie Q̆p-subalgebra with associated strongly Tate-linear subspace Z(b+) ⊆ Def sus(Y ).
WriteM = D(X)[1p ] for the isocrystal over Def sus(Y ) coming from the Dieudonné module of Y.

Theorem 6.5.1 ([DvH22, Thm. 6.1.1]). There is a natural closed immersion G(MZ(b+)) ↪→ U(b).

In the proof we make use of the Cartier–Witt stacks of Drinfeld [Dri20] and Bhatt–Lurie [BL22]
associated to quasi-syntomic schemes of characteristic p. Given such a scheme X, there is a p-

adic formal stack X∆, the prismatisation of X, such that coherent crystals on X are the same as

coherent sheaves on X∆.

12The statement of [vH24, Cor. 3.3.5] contains the assumption that [ibid., Hyp. 2.3.1] holds. This is true for us

because Kp is hyperspecial, see [ibid. 2.3.2].
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Consider the Aut(Y )-torsor

Isom(Y, YDef sus(Y ))→ Def sus(Y ).(6.3)

The locally free crystalM+ = D(Y) defines a vector bundle V+ over the prismatisationDef sus(Y )∆.
This vector bundle has an associated frame bundle which we will write suggestively as

(6.4) Isom(V+,D(Y )Def sus(Y )∆).

If we apply the prismatisation functor to the map (6.3), we get a morphism

Isom(Y, YDef sus(Y ))
∆ → Def sus(Y )∆,

which is a torsor under the p-adic formal group13 Aut(Y )∆. Dieudonné theory gives us a homo-
morphism of group schemes over Spf(Zp)

Aut(Y )∆ → Aut(D(Y ))(6.5)

and a morphism

Isom(Y, YDef sus(Y ))
∆ → Isom(V+,D(Y )Def sus(Y )∆),

which is Aut(Y )∆-equivariant via the homomorphism (6.5) (see [DvH22, §6.3.4] for more de-
tails). The right hand side roughly speaking parametrises all isomorphisms between V+ and
D(Y )Def sus(Y )∆ , while the left hand side parametrises those isomorphisms that are compatible with

the F -structures.

By construction, after pulling back to Z(b+) the torsor (6.3) has a reduction to a Π(b+)-torsor.
Feeding this fact into the prismatisation machinery gives us a reduction of the torsor (6.4) to a
U(b+)-torsor. If we apply the Tannakian perspective on torsors and invert p, then this exactly
gives us a closed immersion

G(MZ(b+)) ↪→ U(b),

which is exactly what we wanted to prove.

Remark 6.5.2. Note that the morphism (6.5), constructed in [DvH22, §6.3.3], corresponds in

practice to the choice of a Z̆p-conjugation class of matrices with coefficients in Acris(R), where
R := Γ(Aut(Y ),O). We wonder whether the entries of these matrices can be related to other con-
structions of p-adic periods of Y . More in general, under integrability assumptions, we constructed
morphisms

Π(b+)∆ → Aut(D(Y )).

A better understanding of this kind of representations of Π(b+)∆ and their relation with the isocrys-
talMZ(b+) might lead to the resolution of Conjecture 6.4.2.

13Since Aut(Y ) is qrsp this is a formal group and not simply a formal group stack.
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7. Monodromy over finite fields and flat Tate conjecture

7.1. An arithmetic version of the parabolicity conjecture. Let X be a smooth connected
variety over Fpn with a rational point x. In this case, the fibre functor ωx : Isoc(X) → VecQpn

induces a Qpn-linear fibre functor for the Qpn-linear Tannakian category ωx : Fn-Isoc(X) →
VecQpn

.

Definition 7.1.1. For (M,ΦM) ∈ Fn-Isoc(X) (resp. (M†,Φ†
M) ∈ Fn-Isoc(X)), we write

G(M,ΦM, x) (resp. G(M†,Φ†
M, x)) for the algebraic group of automorphisms of the restriction

of ωx to ⟨M,ΦM⟩ (resp. ⟨M†,Φ†
M⟩). The group G(M†,Φ†

M, x) coincides with the arithmetic

monodromy group of (M†,Φ†
M) defined in [D’Ad20, Def. 3.2.4].

By [AD22, Prop. 2.2.4], for every overconvergent Fn-isocrystal (M†,Φ†
M) over X, we have as in

Proposition 4.2.9 the following commutative diagram of Qpn-linear algebraic groups

(7.1)

1 G(M, x) G(M,ΦM, x) G(M,ΦM, x)cst 1

1 G(M†, x) G(M†,Φ†
M, x) G(M†,Φ†

M, x)cst 1

where the rows are exact. The groups on the right are the Tannaka groups of the category of con-

stant objects in ⟨M,ΦM⟩ and ⟨M†,Φ†
M⟩. We write G for G(M†,Φ†

M, x) and H for G(M,ΦM, x).

The slope filtration ofMx defines a quasi-cocharacter λ : G1/∞
m → G(M†,Φ†

M, x). Write PG(λ) ⊆ G
for the stabiliser of the slope filtration.

Theorem 7.1.2. If (M,ΦM) has constant slopes, then H = PG(λ). Moreover, if (M†,Φ†
M) is

semi-simple, H is a parabolic subgroup of G.

Proof. This follows from Theorem 4.3.2 by arguing as in Proposition 4.4.2. □

Suppose that (M,ΦM) has constant slopes. If we write (N ,ΦN ) for GrS•(M,ΦM), there is a
functor ⟨M,ΦM⟩ → ⟨N ,ΦN ⟩ sending (M′,ΦM′) to GrS•(M′,ΦM′). This induces the following
commutative diagram with exact rows

(7.2)

1 G(N , x) G(N ,ΦN , x) G(N ,ΦN , x)
cst 1

1 G(M, x) G(M,ΦM, x) G(M,ΦM, x)cst 1.

=

Even in this case, the natural morphism G(N ,ΦN , x)
cst → G(M,ΦM, x)cst is an isomorphism since

the inclusion ⟨N ,ΦN ⟩ ↪→ ⟨M,ΦM⟩ provides an inverse map.

Proposition 7.1.3. The subgroup G(N ,ΦN , x) ⊆ PG(λ) is equal to ZG(λ), the centraliser of the
image of λ.

Proof. By construction, the subgroup G(N ,ΦN , x) is in ZG(λ). On the other hand, by Cheval-
ley’s theorem, there exists an Fn-isocrystal (M′,ΦM′) ∈ ⟨M,ΦM⟩ and a subobject (L,ΦL) ⊆
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GrS•(M′,ΦM′) of rank 1 such that G(N ,ΦN , x) is the stabiliser of L := ωx(L) ⊆ ωx(M′) =: V .
Since (L,ΦL) has rank 1, it is contained as Fn-isocrystal in the image of the quotient

π : Si(M′)→ Si(M′)/Si−1(M′)

for some i. Write (L̃,ΦL̃) ⊆ (M′,ΦM′) for π−1(L,ΦL) and L̃ ⊆ V for its fibre at x. If s is the

slope of (L,ΦL) and V
s ⊆ V is the subspace of slope s, then L = L̃ ∩ V s. We deduce that ZG(λ)

stabilises L, which gives the desired result. □

Corollary 7.1.4. The algebraic group G(N ,ΦN , x)
◦ contains a Cartan subgroup of G(M†,Φ†

M, x)◦.

Proof. If T is a maximal torus of G(M†,Φ†
M, x)◦ containing the image of λ, the centraliser of T in

G(M†,Φ†
M, x) is contained in ZG(λ) = G(N ,ΦN , x). This yields the desired result. □

As a result, we deduce the following semi-simplicity result.

Theorem 7.1.5. Let X be a smooth variety over a finite field Fpn and f : A → X an abelian
scheme with constant slopes. If (M,ΦM) is the F -isocrystal R1fcris∗OA,cris, the induced F -isocrystal
(N ,ΦN ) := GrS•(M,ΦM) is semi-simple. In particular, R1fét∗Qp is a semi-simple lisse Qp-sheaf

over X.

Proof. By étale descent we may assume that X is connected and admits a rational point x. We
may also replace ΦM with its n-th power. By [EV24], the Fn-isocrystal (M,ΦM) is †-extendable
and, by [D’Ad20, Cor. 3.5.2.(ii)], the monodromy group G(M†, x) is a reductive group (note that

(M†,Φ†
M) is pure by the Riemann Hypothesis for abelian varieties). On the other hand, since

the action of the pn-th power Frobenius on the crystalline cohomology groups of Ax is semi-simple

(this Frobenius is in the centre of End(Ax)), we get that G(M†,Φ†
M, x)cst is a reductive group. We

deduce by (7.1) that G(M†,Φ†
M, x) is reductive (see also [Pál22, Thm. 1.2] for a different proof

over curves). By Proposition 7.1.3, the group G(N ,ΦN , x) is the centraliser of λ in G(M,ΦM, x),
thus by [Bor91, Cor. 11.12] it is reductive. This shows that (N ,ΦN ) is semi-simple.

To prove that R1fét∗Qp is semi-simple it is enough to prove that the associated unit-root F -

isocrystal (V,ΦV) is semi-simple. This F -isocrystal coincides with the crystalline Dieudonné module
of the p-divisible group A[p∞]ét. By [BBM82, Thm. 2.5.6.(ii)], the F -isocrystal (M,ΦM) is instead
the crystalline Dieudonné module of A[p∞], thus (V,ΦV) is the minimal slope sub-F -isocrystal of
(M,ΦM). This concludes the proof. □

7.2. Applications to abelian varieties. Before the resolution of the parabolicity conjecture, in
[AD22], we used the theory of Frobenius tori developed in [D’Ad20] to prove that G(M, x) ⊆
G(M†, x) contained a maximal torus. We used this weaker form of the conjecture to prove a
finiteness result for the perfect torsion points of an abelian variety, giving a positive answer to a
question by Esnault.

Theorem 7.2.1 ([AD22, Thm. 5.1.1]). Let k be an algebraic closure of a finite field and let E/k
be a finitely generated field extension. For every abelian variety A over E such that TrE/k(A) = 0,

the group A(Eperf)tors is finite.

Thanks to the full parabolicity conjecture, we then proved the following related result as well.
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Theorem 7.2.2 ([D’Ad23, Thm. 1.1.3]). Let E/Fp be a finitely generated field extension and let
A be an abelian variety over E. The group A(Esep)[p∞] is finite in the following two cases.

(i) If End(A)⊗Z Qp is a division algebra.
(ii) If End(A)⊗Z Q does not have any factors of Albert’s type IV.

This theorem enriches the list of known results on the finiteness of separable p-torsion points of
abelian varieties (see [Vol95] and [Rös20]). It is worth mentioning that abelian varieties with finite
separable p-torsion play an important role in the theory of Brauer–Manin obstructions in positive
characteristic (see [PV10]).

As a further consequence of the parabolicity conjecture Ambrosi proved the following result.

Theorem 7.2.3 ([Amb23a]). Let E/Fp be a finitely generated field extension and let A be a simple
abelian variety over E such that A(E)⊗Z Q ̸= 0. The following statements are true.

(i) A(Eperf) is finitely generated if and only if there are no idempotents 0 ̸= e ∈ End(A)⊗ZQp

such that e(A[p∞]ét) = 0.
(ii) A is of positive p-rank if and only it the infinitely p-divisible points of A(E) are torsion

points.

7.3. Flat Tate conjecture. Let X be a smooth projective variety over a finitely generated field
k of characteristic p with field of constants κ (defined as the biggest perfect subfield of k). The
original version of the Tate conjecture was formulated by Tate using ℓ-adic étale cohomology. For
a natural number r ≥ 0 it has the following form14.

Conjecture 7.3.1 (Tateℓ(X, r)). The cycle class map

CHr(X)Qℓ

cr−→ H2r
ét (Xk̄,Qℓ(r))

Γk

is surjective.

If r = 1 this conjecture is independent of ℓ and it is equivalent to the finiteness of the prime-to-p
part of the Brauer group of X (see [Tat65] for k finite). When r = 1 the conjecture is known, for
example, when X is an abelian variety, [Tat66], or a K3 surface.

There is a variant of this conjecture for crystalline cohomology. By [Mor19, Prop. 3.2], for every
r the cohomology group H2r

cris(X)Qp can be naturally upgraded to an F -isocrystal over k, thus it
is endowed with a topologically p-nilpotent connection ∇ and a Frobenius structure. The Tate
conjecture in this case has the following form.

Conjecture 7.3.2 (Tatecris(X, r)). The cycle class map

CHr(X)Qp

cr−→ H2r
cris(X)∇=0,φ=pr

Qp

is surjective.

14Strictly speaking, Tate formulated the conjecture only in codimension 1, thus for r = 1.
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Pál in [Pál22, Def. 5.3] formulated a variant of the Tate conjecture using rigid cohomology. Because
of the knowledge of rigid cohomology at the time, he had to assume the transcendence degree of
k to be (at most) one. He first constructed in [ibid., (5.12.2)], using the higher direct image of
rigid cohomology of spreading outs, an F -crystal H2r

rig(X) over κ. Then in [ibid., Prop. 5.19] he
constructed cycle class maps

CHr(X)Qp

cr−→ H2
rig(X).

His constructions can be now generalised to higher transcendence degree thanks to [EV24]. We can
then consider the following conjecture

Conjecture 7.3.3 (Taterig(X, r)). The cycle class map

CHr(X)Qp

cr−→ H2r
rig(X)φ=pr

is surjective.

Thanks to Theorem 3.3.4, we can prove that the crystalline and rigid Tate conjectures are equiva-
lent.

Proposition 7.3.4. For every smooth projective variety X over k and every r ≥ 0, the conjectures
Tatecris(X, r) and Taterig(X, r) are equivalent.

Proof. Let f : X → S a smooth projective spreading out of X, with S a smooth connected scheme
over a finite field with generic fibre k. By [Mor19, Prop. 3.2], the higher direct image R2rfcris∗OXcris

is an F -isocrystal. By Theorem 3.3.4, we deduce that

H0
cris(S,R

2rfcris∗OXcris) = H2r
cris(X)∇=0

Qp
.

The result then follows from Kedlaya’s full faithfulness, [Ked04b]. □

In codimension 1, Pál proved also that the rigid Tate conjecture and the ℓ-adic étale Tate conjecture
are equivalent as well.

Proposition 7.3.5 ([Pál22, Prop. 6.6]). For every smooth projective variety X over k, the con-
jectures Tateℓ(X, 1) and Taterig(X, 1) are equivalent.

Both the crystalline and rigid Tate conjectures do not have clear relations with the p-primary
torsion of the Brauer group. The Kummer exact sequence gives rather a comparison between the
p-torsion of the Brauer with the fppf cohomology of µpn . More precisely, we have the following
exact sequence

0→ Pic(X)/pn
c1−→ H2

fppf(X,µpn)→ Br(X)[pn]→ 0.

The first result on the relation between Tateℓ(X, 1) and the finiteness of the p-primary torsion of
the Brauer was obtained by Milne.

Theorem 7.3.6 ([Mil75]). If X is a smooth projective surface over a finite field such that Tateℓ(X, 1)
is true, then Br(X)[p∞] is finite.

Ulmer in [Ulm14, §7.3.1] considered the following naive p-adic analogue of Tateℓ(X, 1) which involves
the fppf cohomology of µpn .
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Conjecture 7.3.7 (TateUlm
fppf (X, 1)). The cycle class map

Pic(X)Qp

c1−→ H2
fppf(Xk̄,Qp(1))

Γk

is surjective.

Nonetheless, we noticed that Ulmer’s conjecture is false in general.

Proposition 7.3.8 ([D’Ad24a, Cor. 6.7]). For every abelian variety B over a finitely generated
field k with End(B) = Z, conjecture TateUlm

fppf (B ×B, 1) is false.

7.3.1. Relation with the parabolicity conjecture. Let us try to see more in depth why TateUlm
fppf (X, 1)

can not be true in general. Combining the comparison between crystalline and fppf cohomology of
Qp(1), [[Ill79], Thm. II.5.14], with Theorem 4.1.1 and Theorem 5.2.1, we deduce that the geometric
monodromy group of the Galois action on H2

fppf(Xk̄,Qp(1)) is contained in a Levi subgroup L of

the monodromy group15 P := G(H2
cris(X)Qp). At the same time, P is the parabolic subgroup of

G := G(R2frig∗OXrig) associated to the slope filtration and by the theory of weights the latter
is a reductive group. Thus, there is the extra obstruction given by the (big) unipotent radical
of P = Ru(P ) ⋊ L, which is not captured by TateUlm

fppf (X, 1). Indeed, note that for every G-
representation V , we have

V G = V P = (V Ru(P ))L ⊆ V L

and, in general, the last containment is not an equality.

To overcome this problem we looked instead at the Qp-vector subspace(
lim←−
n

H2
fppf(Xk̄, µpn)

k

)[
1

p

]
⊆ H2

fppf(Xk̄,Qp(1))
Γk

where

H2
fppf(Xk̄, µpn)

k := im
(
H2

fppf(X,µpn)→ H2
fppf(Xk̄, µpn)

)
.

The definition of these groups was inspired by the previous definition of the transcendental Brauer
group of a variety. We expected that the following property was true.

Conjecture 7.3.9 (Tatefppf(X, 1)). The cycle class map

Pic(X)Qp

c1−→

(
lim←−
n

H2
fppf(Xk̄, µpn)

k

)[
1

p

]
is surjective.

As an evidence of this claim we proved the conjecture for abelian varieties.

Theorem 7.3.10 ([D’Ad24a]). If X is an abelian variety over k, the conjecture Tatefppf(X, 1) is
true.

15We consider here monodromy groups of isocrystals without Frobenius structure.
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We deduced the result by using Tatecris(A×A, 1) proved by de Jong, [deJ98, Thm. 2.6]. The main
issue that we had to overcome was the lack of a good comparison between crystalline and fppf
cohomology of Zp(1) over k. In the special case of abelian varieties, we obtain such a comparison
in [D’Ad24a, §4] by using the p-divisible group of A. This result was then extended by Lazda and
Skorobogatov to K3 surfaces using the Kuga–Satake construction, [LS24].

Note that by Lemma [D’Ad24a, Lem. 3.3], we have a containment

H2
fppf(Xk̄, µpn)

k ⊆ H0
fppf(k,R

2ffppf∗µpn)

for every n ≥ 1. In light of this, we can also consider the following stronger form of Tatefppf(X, 1).

Conjecture 7.3.11 (Tatestrfppf(X, 1)). The cycle class map

Pic(X)Qp

c1−→ H0
fppf(k,R

2ffppf∗Qp(1))

is surjective.

We expected that both Conjecture 7.3.9 and Conjecture 7.3.11 were equivalent to the ℓ-adic Tate
conjecture for divisors. This was proved recently by Li and Qin.

Theorem 7.3.12 ([LQ24]). For every smooth projective variety X over k, both Tatefppf(X, 1) and
Tatestrfppf(X, 1) are equivalent to Tateℓ(X, 1).

7.4. The p-primary torsion of the Brauer group. If k is a finitely generated field extension of
Fp one can not expect Br(A) to be finite. Indeed, when k is infinite, Br(k) is an infinite group and
it injects into Br(A). Even Br(A)/Br(k) might be infinite since it contains a subgroup isomorphic
to H1

ét(k,PicA/k). On the other hand, if Br(Aks)
k is the image of the natural morphism Br(A) →

Br(Aks), where ks is a separable closure of k in an algebraic closure k̄, the group Br(Aks)
k[1p ] is

finite by [CS21, Thm. 16.2.3] or [CHT23, Cor. 1.4]. In general, the p-torsion of Br(Aks)
k is not

finite (see [D’Ad24a, Prop. 5.4]). Nonetheless, we proved the following finiteness result.

Theorem 7.4.1 ([D’Ad24a, Thm. 1.1]). Let A be an abelian variety over a finitely generated field k
of characteristic p > 0. The transcendental Brauer group Br(Aks)

k is a direct sum of a finite group
and a finite exponent p-group. In addition, if the Witt vector cohomology group H2(Ak̄,WOAk̄

) is

a finite W (k̄)-module, then Br(Aks)
k is finite.

The condition on H2(Ak̄,WOAk̄
) is necessary to remove the “supersingular pathologies” as the one

of our counterexample in [D’Ad24a, Prop. 5.4]. It is satisfied, for example, when the p-rank of A
is g or g− 1, where g is the dimension of A (see [Ill83, Cor. 6.3.16]). If the formal Brauer group of

Ak̄, denoted by B̂r(Ak̄), is a formal Lie group, then by [AM77, Cor. II.4.4] the cohomology group

H2(Ak̄,WOAk̄
) is a finite W (k̄)-module if and only if B̂r(Ak̄) has finite height. Note also that the

formal Brauer group of abelian surfaces is always a formal Lie group by [ibid., Cor. II.2.12]. As
a consequence of Theorem 4.1.4, we deduced that the subgroup of Galois-fixed points of Br(Aks),
denoted by Br(Aks)

Γk , has finite exponent as well, [D’Ad24a, Cor. 5.3]. This is a variant of [SZ08,
Ques. 2] for abelian varieties.

On the other hand, as a consequence of Proposition 7.3.8, we deduced that in general

Tp(Br(Ak̄))
Γk ̸= 0.
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These “exceptional classes” in Tp(Br(Ak̄))
Γk are naturally related to the specialisation morphism

of the Néron–Severi group. We recall the following theorem, which was proved in [And96, Thm.
5.2] in characteristic 0 and in [Amb23b] and [Chr18] in positive characteristic.

Theorem 7.4.2 (André, Ambrosi, Christensen). Let K be an algebraically closed field which is
not an algebraic extension of a finite field, X a finite type K-scheme, and Y → X a smooth and
proper morphism. For every geometric point η̄ of X there is an x ∈ X(K) such that rkZ(NS(Yη̄)) =
rkZ(NS(Yx)).

As it is well-known, the theorem is false when K = F̄p (see [MP12, Rmk. 1.12]). We proved that,
in the known counterexamples, the elements in Tp(Br(Ak̄))

Γk explain the failure of Theorem 7.4.2
when K = F̄p. More precisely, we proved the following result.

Theorem 7.4.3 ([D’Ad24a, Thm. 1.4]). Let X be an integral normal scheme of finite type over
Fp with generic point η = Spec(k) and let f : A → X be an abelian scheme over X with constant
slopes. For every closed point x = Spec(κ) of X we have

rkZ(NS(Ax̄)
Γκ)− rkZ(NS(Aη̄)

Γk) ≥ rkZp(Tp(Br(Aη̄))
Γk).

Remark 7.4.4. In the inequality, the left term is “motivic”, while the right term comes from some
p-adic object which, as far as we know, has no ℓ-adic analogue.

7.4.1. We end this section with an interpretation of Theorem 7.4.3 that uses the point of view
of §7.3.1. In this case, we replace the monodromy groups considered there with their arithmetic
counterparts, as in §7.1. Thanks to the crystalline Tate conjecture for abelian varieties, we can
then read the inequality of Theorem 7.4.3 as the inequality

dim(V Tx)− dim(V P ) ≥ dim(V L)− dim(V P ),

where V is H2
cris(Ax)[

1
p ] and Tx ⊆ L is the monodromy group of the Frobenius at x. We wonder

whether in Theorem 7.4.3 we can always find a point x such that the inequality becomes an equality.
This corresponds to finding a Frobenius torus Tx such that V Tx = V L. This would prove that the
group Tp(Br(Aη̄))

Γk is the “only obstruction” to Theorem 7.4.2 when K = Fp.
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[Amb23b] E. Ambrosi, Specialization of Néron-Severi groups in positive characteristic, Ann. Sci. Éc. Norm. Supér.

56 (2023), 665-711.

[AD22] A. Ambrosi and M. D’Addezio, Maximal tori of monodromy groups of F -isocrystals and an application

to abelian varieties, Algebraic Geom. 9 (2022), 633–650.
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