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1. Tsuzuki’s minimal slope theorem

1.1. Introduction. Let k be a perfect field of positive characteristic p, W its ring of Witt vectors
and K := Frac(W ). Let X over k be a smooth variety. We denote by F-Isoc(X) the category of
(coherent) convergent F -isocrystals and by F-Isoc�(X) the category of (coherent) overconvergent
F -isocrystals. These are Qp-linear rigid monoidal abelian categories. Kedlaya proved that the nat-

ural functor α : F-Isoc�(X) → F-Isoc(X) is fully faithful. The category F-Isoc(X) is equivalent
to the category of coherent F -isocrystals on the crystalline site of X/W .

Definition 1.1.1. We say thatM∈ F-Isoc(X) is †-extendable if it is in the essential image of α and
we write M† for the associated overconvergent F -isocrystal (which is unique up to isomorphism).
If N ⊆ M with M †-extendable the †-hull of N in M is the smallest1 †-extendable subobject of
M containing N and it is denoted by N .

The reason for the name is that, roughly speaking, the F -isocrystals in the essential image of α
are the ones that can be extended to a small p-adic polyannulus at infinity. In particular, when X
is proper the functor is an equivalence. If f : Y → X is a smooth and proper morphism of smooth
varieties over k, then Rifcrys∗OY,crys is a †-extendable F -isocrystal.

An important concept in the theory of F -isocrystals is the concept of slope, which comes from
the Dieudonné–Manin decomposition. The F -isocrystals over Spec(k) form a semi-simple category
and the isomorphism classes of irreducible objects are in bijection with the rational number. The
rational number associated to an irreducible object is called slope. If X is connected, after possibly
passing to a dense open of X, every F -isocrystal M admits a unique slope filtration

0 = S−1(M) ( S0(M) ( · · · ( Sn(M) =M
where for each i ≥ 0, the quotient Si(M)/Si−1(M) is isoclinic of slope si ∈ Q (i.e. at geometric
points it is a direct sum of irreducible F -isocrystals of slope si) and s0 < · · · < sn. We say that
n+1 is the length of the filtration. IfM admits the slope filtration every subquotient ofM admits
the slope filtration as well. Moreover, for every morphism g : Z → X with Z connected g∗ preserves
the slope filtration.

If M is †-extendable, the pieces of the filtration are not in general †-extendable. If we come
back to the geometric example, after shrinking X enough, the F -isocrystal S0(Rifcrys∗OY,crys) is
the F -isocrystal associated to the p-adic local system Rifét∗Qp. This is the classical example of an
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1Note that the category of F -isocrystals is artinian because if M′ ⊆M have the same ranks, then M′ =M.
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F -isocrystal which is not †-extendable. This talk is about the interaction between the property of
being †-extendable and the slope filtration.

In December 2018, reading the work of Vella on the characterization of parabolic subgroups, I
noted that the following property was related to the parabolicity conjecture of F -isocrystals.

Conjecture 1.1.2 (MS(X)). Let X be a smooth connected variety over k and let N ⊆ M be
an inclusion of F -isocrystals over X. If M is †-extendable and admits the slope filtration, then
S0(N ) = S0(N ).

I will talk about the parabolicity conjecture and its proof next week, today we focus on MS(X).
Initially, I could prove MS(X) for some F -isocrystals coming from p-divisible groups using a result
of Tate on the local behaviour of étale p-divisible subgroups. Tsuzuki, independently, proved the
full MS(X) when X is a smooth connected curve. This was an intermediate step in his proof of
Kedlaya’s conjecture over curves.

Theorem 1.1.3 ([Tsu19], Proposition 5.8). If X is a smooth connected curve over k, then MS(X)
is true.

Corollary 1.1.4. Let X be a smooth connected curve over k and let M and N be as in MS(X).
If M† is irreducible, then S0(N ) is irreducible.

Proof. Let N ′ ⊆ S0(N ) be a non-zero sub-F -isocrystal. Since M† is irreducible, N ′ and S0(N )
have the same †-hull. On the other hand, N ′ is isoclinic, which implies by Theorem 1.1.3 that
N ′ = S0(N ′) = S0(N ). �

Corollary 1.1.5 (Kedlaya’s conjecture). Let X be a smooth connected curve over k and let M1

and M2 be two F -isocrystals over X which admit a slope filtration and that come from irreducible
overconvergent F -isocrystals. If S0(M1) ' S0(M2), then M1 'M2.

Proof. Write N for S0(M1), ι for the tautological inclusion N ⊆ M1 and choose an isomorphism

ψ : N ∼−→ S0(M2). Consider M := M1 ⊕M2 and the inclusion N ⊆ M induced by (ι, ψ). By
Theorem 1.1.3, we have that S0(N ) = N 6= N ⊕ N = S0(M), which implies that N is strictly

smaller than M. Therefore, N † is irreducible. On the other hand, N admits non-trivial maps to
M1 and M2. Therefore, M1 ' N 'M2. �

Another consequence is the following p-adic refinement of the strong multiplicity one theorem
for cuspidal automorphic representations.

Corollary 1.1.6. Let X be a smooth connected curve over a finite field, let A be its adele ring and let
r be a positive integer. The isomorphism class of a Qp-linear cuspidal automorphic representation
π of GLr(A) is determined by the datum of the Hecke eigenvalues of minimal slope at all but finitely
many closed points of X.

Proof. By Abe, for any such π there exists an irreducible Qp-linear overconvergent F -isocrystalM†
defined over a certain dense open of X which corresponds to π in the sense of Langlands. After
shrinking X we may assume that the associated F -isocrystal M admits the slope filtration. By
Corollary 1.1.5, the F -isocrystal S0(M) determines the isomorphism class ofM. On the other hand,
by Katz–Crew, the isoclinic F -isocrystal S0(M) is induced by a Qp-linear continuous representation
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ρ of the Weil group of X. Moreover, by Corollary 1.1.4, ρ is irreducible. By Chebotarev’s density
theorem for the étale fundamental group of X, since ρ is semi-simple, its isomorphism class is
determined by the Frobenius eigenvalues at all but finitely many points. By construction, these
eigenvalues are the same as the Frobenius eigenvalues of M† of minimal slope. Since π and M†
correspond in the sense of Langlands, we conclude the proof. �

I will spend the rest of the talk explaining a proof of Theorem 1.1.3. The proof here is a shorter
variant of the original proof in [Tsu19].

1.2. First reductions. We reduce the problem to the case when X is a dense open of P1
k. The

reductions are still valid for a variety of dimension greater than 1.

Lemma 1.2.1. If MS(X) is true for N isoclinic, then it is true for every N .

Proof. The proof is by induction on the length of the slope filtration of N . Suppose that the slope
filtration of N has length n + 1 ≥ 2 and we already know the statement for length at most n.
We want to show that S0(N ) = S0(Sn−1(N )), which implies S0(N ) = S0(N ). We may assume

Sn−1(N ) ( N . Thus we have to show that the minimal slope of N/Sn−1(N ) 6= 0 is greater than

the minimal slope of Sn−1(N ), which by the inductive hypothesis is s0. If π : N → N/Sn−1(N ) is

the natural projection, then π(N ) is isoclinic of slope sn and π(N ) = N/Sn−1(N ). Again, by the

inductive hypothesis we have that the minimal slope of N/Sn−1(N ) is sn > s0. This concludes the
proof. �

Lemma 1.2.2. If U is a dense open of X, then MS(U)⇒ MS(X).

Proof. We want to prove that the operation of taking †-hull commutes with the restriction functor
to U . We have by definition (N|U ) ⊆ N|U . The other inclusion is a consequence of the following
theorem.

Theorem 1.2.3 ([Ked07], Theorem 5.2.1 and Proposition 5.3.1). The restriction functor F-Isoc�(X)→
F-Isoc�(U) is fully faithful and closed under the operation of taking subquotients.2

Since (N|U ) extends to someM′ over X such that N ⊆M′ ⊆M, we get (N|U ) ⊇ N|U . Thanks

to this, if S0(N|U ) = N|U then S0(N )|U = S0(N|U ) = N|U . This implies S0(N ) = N . �

Lemma 1.2.4. If f : Y → X is a finite étale Galois cover, MS(Y )⇔ MS(X).

Proof. The result follows from the étale descent for F -isocrystals and overconvergent F -isocrystals.
Write G for the Galois group of the cover. To prove MS(Y )⇒ MS(X) we prove that if N and M
are over X, then f∗N = f∗N . The inclusion f∗N ⊇ f∗N follows from the definition of †-hull. On
the other hand, ifM′ := f∗N , then the intersection

⋂
g∈G g

∗M′ contains f∗N and it is †-extenda-

ble, thus it is equal toM′. This implies thatM′ descends to X to some †-extendable F -isocrystal
which contains N . This gives the other inclusion.

2Note that the analogous result is true for complex local systems or lisse Q`-sheaves, since for normal connected

varieties the fundamental group of dense opens surjects to the fundamental group of the entire variety. In general,

F -isocrystals instead might acquire new subquotients when you shrink X as they may acquire the slope filtration

only after shrinking X.
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We prove now MS(X) ⇒ MS(Y ). If N and M are over Y , then by the assumption S0(f∗N ) =
f∗N . By the previous argument this implies S0(f∗f∗N ) = f∗f∗N . Since f∗f∗N =

⊕
g∈G g

∗N and

all the g∗N have equal minimal slopes we conclude that S0(N ) = N . �

Putting together the two observations it is enough to prove Theorem 1.1.3 when C ⊆ P1
k is a dense

affine open obtained by removing a set of rational points Z = {a1, . . . , as}3. Let Spf(ÂC) = C ⊆ P̂1
W

be a smooth formal lift of C.

1.3. A local version. We prove now a local version of Theorem 1.1.3. The main ingredient in the
proof is the reverse slope filtration. Consider the Cohen ring

OE := W ((t))∧ =

{∑
i∈Z

ait
i
∣∣∣ ai ∈W, lim

i→−∞
vp(ai) =∞

}
.

It is a complete discrete valuation ring unramified over W with residue field k((t)). Let OE† ⊆ OE
be the subring of series which converge in some annulus ∗ ≤ |t| < 1. These two rings are both
endowed with a Frobenius lift ϕ(t) = tp and a derivation ∂t. Write E and E† for the fraction fields.

Definition 1.3.1 ((ϕ,∇)-modules). If R is either E or E†, we say that a finite dimensional vector

space M over R is a (ϕ,∇)-module if it is endowed with a ϕ-linear isomorphism F : M
∼−→ M

and an additive morphism ∇∂t : M →M which satisfies the Leibniz rule and such that ∇∂t ◦ F =
ptp−1F ◦ ∇∂t .

The category F-Isoc(k((t))) is the category of (ϕ,∇)-modules over E and F-Isoc�(k((t))) is the
category of (ϕ,∇)-modules over E†. Kedlaya’s full faithfulness says that the extension-of-scalars
functor F-Isoc�(k((t)))→ F-Isoc(k((t))) is fully faithful.

Proposition 1.3.2 (Kedlaya, [Tsu19, Theorem 2.14]). If N ⊆ M F-Isoc(k((t))) and M is †-ex-
tendable, then S0(N) = S0(N).

Construction 1.3.3. Let Q† be the image of

(M †)∨ := HomE†(M
†, E†)→ HomE(M, E)→ HomE(N, E) := N∨.

Note that we have natural maps

M∨ = (M †)∨ ⊗E† E → Q† ⊗E† E → N∨.

The first arrow is surjective by construction, the second one is surjective because the composition
of the two is surjective. Note that even though Q† ⊆ N∨, the second map needs not to be injective.
Dualizing with respect to E we get inclusions N ⊆ Q∨ ⊆M .

Lemma 1.3.4. The (ϕ,∇)-module Q∨ is the †-hull of N in M . In other words, N is the unique

submodule of M which contains N and comes from some N
† ⊆ M † such that (N

†
)∨ → N∨ is

injective.

3Actually we could also assume that C = A1
k and remove only the point ∞
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Proof. By construction, Q∨ is †-extendable and it contains N , so that N ⊆ Q∨. On the other
hand, if P is †-extendable and contains N , then we have morphisms (M †)∨ � (P †)∨ → N∨, with
the first one surjective. Therefore, the morphism (P †)∨ → N∨ factors through Q†. This implies
N ⊇ Q∨. �

Let us now recall the reverse filtration. For this we need to introduce two other discrete valuation
fields which lift k((t))alg.

Definition 1.3.5. We consider the ring of Witt vectors k((t))alg and we denote it by OẼ . Every

element of Ẽ can be written uniquely as
∑∞

n=0[fn]pn where [fn] is the Teichmüller lift of some

fn ∈ k((t))alg. Consider the subring OẼ† ⊆ OẼ of those series such that the t-adic valuations
of fn is bounded below by some linear function in n. This condition can be also rephrased as a
convergence condition on p-adic annuli, by interpreting these series as Hahn series. The subring

OẼ† is preserved by the Frobenius of OẼ . We write Ẽ† and Ẽ for the fraction fields. We will not
talk about derivations in this context.

The main ingredient in the proof of Theorem 1.1.3 is the following result due to de Jong.

Proposition 1.3.6 (de Jong, Proposition 5.5). If M̃ † is a ϕ-module over Ẽ†, then the following
statements are true.

(i) M̃ † admits the opposite slope filtration, i.e. there exists a filtration

0 = Srev
−1 (M̃ †) ( Srev

0 (M̃ †) ( · · · ( Srev
n (M̃ †) = M̃ †

of ϕ-modules over Ẽ† such that (Srev
i (M̃ †)/Srev

i−1(M̃ †))⊗Ẽ† Ẽ ' Sn−i(M̃)/Sn−i−1(M̃).

(ii) If M † is isoclinic of slope s/r, M̃ †[p1/r] admits a basis of vectors {v1, . . . , vm} such that

ϕ(vi) = ps/rvi.

Idea of the proof. The result follows from a splitting property for the non-commutative ring Ẽ†[F ],

where Fa = ϕ(a)F for a ∈ Ẽ†. De Jong proves that for every polynomial P (F ) = Fn+an−1F
n−1 +

· · · + a0 ∈ Ẽ†[F ] there exist r > 0 and λ1, . . . , λn ∈ Ẽ†[p1/r] with non-increasing p-adic valuations
such that P (F ) = (F − λ1)(F − λ2) . . . (F − λn). Applying this to the minimal polynomial P (F )

which annihilates m ∈ M̃ †, then F ((F − λ2) . . . (F − λn)m) = λ1m. �

Lemma 1.3.7. The multiplication morphism E ⊗E† Ẽ† → Ẽ is injective.

Lemma 1.3.8. Let M † be a ϕ-module over E†, N an isoclinic ϕ-module over E of slope s/r and
ψ : M → N is a morphism of ϕ-modules. If the restriction of ψ to M † is injective, then the
maximal slope of M is s/r and the rank of Sn(M)/Sn−1(M) is smaller than the rank of N .

Proof. Since Ẽ† is flat over E† and E ⊗E† Ẽ† ↪→ Ẽ , then ψ|M† induces an injective morphism

ψ′ : M̃ † = M † ⊗E† Ẽ† → N ⊗E† Ẽ† → N ⊗E Ẽ .
The restriction of ψ′ to Srev

0 (M̃ †) induces a non-trivial morphism Srev
0 (M̃ †) ⊗Ẽ† Ẽ → N ⊗E Ẽ .

This implies that the slope of Srev
0 (M̃ †), which is the maximal slope of M , is s/r. Moreover, by

Proposition 1.3.6.(ii), (Srev
0 (M̃ †)[p1/r])ϕ=ps/r is a Qp(p

1/r)-vector space of dimension equal to the
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rank of Sn(M)/Sn−1(M). Similarly, by the Dieudonné–Manin decomposition, (N ⊗E Ẽ [p1/r])ϕ=ps/r

is a Qp(p
1/r)-vector space of dimension equal to the rank of N . We then obtain the inequality of

ranks thanks to the injectivity of ψ′. �

Proof of Proposition 1.3.2. By Lemma 1.2.1, it is enough to prove the result when N is isoclinic
of slope s/r and N = M . In that case we have to check that N has minimal slope s/r and that

the inclusion N ⊆ S0(N) is an equality. By Lemma 1.3.4, the morphism N
∨ → N∨ satisfies the

assumptions of Lemma 1.3.8, thus N has minimal slope s/r. Moreover, since

rk(N) = rk(N∨) ≥ Sn(N
∨

)/Sn−1(N
∨

) = rk(S0(N)),

we get N = S0(N). �

1.4. Local to global. To pass from the local situation to the global situation it is convenient to
construct partial †-hulls. For every 0 ≤ i ≤ s let NZi be the smallest sub-F -isocrystal of M over
C which contains N and comes from an F -isocrystal overconvergent along Zi := {a1, . . . , ai}. Note
that Z0 = ∅ so that NZ0 = N . We have a chain N = NZ0 ⊆ NZ1 ⊆ · · · ⊆ NZs = N . Write

NZi for the (ϕ,∇)-module over ÂC,K associated to NZi . For every i, let Eai be E endowed with

the morphism ÂC,K → E induced by ai and Mai the base change of M to Eai . We define in an

analogous way E†ai .

Proposition 1.4.1 (Tsuzuki). For every 1 ≤ i ≤ s, the (ϕ,∇)-module NZi ⊗ Eai is the †-hull of
NZi−1 ⊗ Eai in Mai.

Proof. Let Ci := C ∪ Zi and Â†C,Ci,K
:= Γ(]Ci[P1

K
, j†COP1

K
). The ÂC,K modules NZi associated

to NZi can be constructed as in §1.3.3 by replacing E and E† with the rings ÂC,K and Â†C,Ci,K
.

By an analogue of Lemma 1.3.4, for every i the (ϕ,∇)-module NZi comes from a (ϕ,∇)-module

N
†
Zi

over Â†C,Ci,K
such that (N

†
Zi

)∨ → N∨ is injective. From this it follows that even the natural

maps (N
†
Zi

)∨ → (NZi−1)∨ are injective for every i. By [Tsu19, Lemma 3.1], Â†C,Ci,K
→ E†ai is

flat and the natural morphism Â†C,Ci−1
⊗
Â†C,Ci,K

E†ai → Eai is injective. Therefore, the morphism

(N
†
Zi
⊗
Â†C,Ci,K

E†ai)∨ → (NZi−1 ⊗ÂC,K
Eai)∨ obtained as the composition of

(N
†
Zi

)∨ ⊗
Â†C,Ci,K

E†ai ↪→ (NZi−1)∨ ⊗
Â†C,Ci,K

E†ai ↪→ (NZi−1)∨ ⊗ÂC,K
Eai

is injective. This proves what we wanted by Lemma 1.3.4. �

Since S0(NZi)⊗ Eai = S0(NZi ⊗ Eai), by Proposition 1.3.2 and Proposition 1.4.1 we have

S0(N ) = S0(NZ0) = S0(NZ1) = · · · = S0(NZs) = S0(N ).

This concludes the proof of Theorem 1.1.3.
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2. Parabolicity conjecture of F -isocrystals

2.1. Introduction. Retain notation as in the previous talk. We saw a proof of MS(X) when X
has dimension 1. Today we talk about another related conjecture on the monodromy groups of
F -isocrystals, the parabolicity conjecture and we will prove MS(X) in any dimension. We will
assume today that k is an algebraically closed. Let X be a smooth connected variety over k and let
x ∈ X(k) be a rational point. The category Isoc(X) of convergent isocrystals admits a fibre functor
ωx : Isoc(X)→ VecK , namely a faithful exact K-linear ⊗-functor. This makes Isoc(X) a neutral
Tannakian categories. We will not recall the definition of a neutral Tannakian category, it is enough
to know that ωx induces an equivalence Isoc(X)

∼−→ RepK(πIsoc1 (X)) where πIsoc1 (X) := Aut(ωx) is
the affine group scheme over K of ⊗-automorphisms of the fibre functor ωx. The group πIsoc1 (X) is
very big! If we are simply interested in studying the behaviour of one objectM∈ Isoc(X), we can
consider the image G(M) of the tautological representation of πIsoc1 (X)→ GL(ωx(M)). The linear
algebraic group G(M) is the monodromy group attached to M. If 〈M〉 ⊆ Isoc(X) is the smallest
strictly full abelian ⊗-subcategory which contains direct sums of subquotients ofM⊗n⊗ (M∨)⊗m,
then 〈M〉 is equivalent via ωx to the category RepK(G(M)). Note that by construction, in 〈M〉
we also have, for example, the wedge products

∧rM. A similar story holds for Isoc�(X). We write
G(M†) for the monodromy group of M†. We have that G(M) ⊆ G(M†) ⊆ GL(ωx(M†)). If M
admits the slope filtration and Stab(S•) ⊆ G(M†) is the stabiliser of the slope filtration of ωx(M),
then G(M) ⊆ Stab(S•). Indeed, the slope filtration of the F -isocrystal (M,Ψ) induces a filtration
of the isocrystal M by simply forgetting the F -structure. A natural question, initially asked (in a
weaker form) by Crew, is whether this inclusion is an equality.

Conjecture 2.1.1 (P(X)). Let X be a smooth connected variety and M† an overconvergent F -
isocrystal over X. If M admits the slope filtration, then G(M) = Stab(S•).

Crew proved the conjecture for some overconvergent F -isocrystals coming from geometry, namely
for the higher image of generic abelian schemes and for the F -isocrystals associated to Kloosterman
sums. In this talk, we will we will present the proof of MS(X) and P(X) for smooth connected
varieties of any dimension. Here the logical path of the proof

MS(X) for curves⇒ P(X) for curves⇒ MS(X)⇒ P(X).

In the previous talk we saw a variant of Tsuzuki’s proof of MS(X) for curves. Let us continue from
there.

2.2. Proof of MS(X)⇒ P(X). Write σ for the lift of the Frobenius of K. IfM is an F -isocrystal,
then the monodromy group G(M) is endowed with an extra structure, namely an isomorphism

Φ : G(M)(σ) ∼−→ G(M). We write F -〈M〉 for the category{
(N ,Ψ)

∣∣ N ∈ 〈M〉 and Ψ : F ∗N ∼−→ N
}
.

By [Cre92], Proposition 2.4, this is equivalent to the category

F -〈ωx(M)〉 :=
{

(V, ρ)
∣∣ V ∈ F-Isoc(k) and ρ : G(M)→ GL(V ) is a Φ-equivariant representation

}
.

Let us also consider 〈M〉F ⊆ F -〈M〉, the smallest Tannakian subcategory containing M and
the F -isocrystals coming from k. Write 〈ωx(M)〉F for the essential image of 〈M〉F in F -〈ωx(M)〉.
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Again, we give analogous definitions for overconvergent F -isocrystals. We will also use the analogue
notation for Φ-equivariant representations of algebraic groups over K endowed with an isomorphism
Φ : G(σ) ∼−→ G. If M is a †-extendable F -isocrystal admitting the slope filtration, for every F -
isocrysal N † ∈ 〈M†〉F the subgroup Stab(S•) ⊆ G(M†) stabilises the slope filtration of ωx(N †).
This follows from the fact that the property is preserved by direct sum, tensor product, dual,
subquotients and twist by F -isocrystals coming from k.

We prove a Φ-equivariant version of Chevalley theorem.

Proposition 2.2.1. Let G be an algebraic group over K endowed with an isomorphism Φ : G(σ) ∼−→
G, H ⊆ G subgroup stable under Φ, V ∈ F-Isoc(k) and ρ : G ↪→ GL(V ) a faithful Φ-equivariant
representation. There exists V ′ ∈ 〈 (V, ρ) 〉F and a line L ⊆ V ′ stable under the Frobenius structure
such that H is the stabiliser of L ⊆ V ′ in G.

Proof. We may assume that G = GL(V ). By the K-linear Chevalley theorem, [Del82, Proposition
3.1.(b)], there exists a K-linear representation ρ′ : GL(V ) → GL(V ′) of GL(V ) such that H is
the stabiliser of a line L ⊆ V ′. The K-linear representation ρ′ is semi-simple. For each irreducible
summand V ′0 ⊆ V ′ there exist n > 0, m ≥ 0 and an irreducible K-linear representation τ of the sym-
metric group Sn, such that V ′0 is isomorphic to HomSn(τ, V ⊗n)⊗(det(V )∨)⊗m as a representation of
GL(V ), where Sn acts on V ⊗n by permutations. The representation HomSn(τ, V ⊗n)⊗(det(V )∨)⊗m

is naturally endowed with a Frobenius structure induced by the Frobenius structure of V . There-
fore, we can endow V ′ with a Frobenius structure and upgrade ρ′ to a Φ-equivariant representation
in 〈 (V, id) 〉F . Since H is the stabiliser of L ⊆ V ′ and it is stable under the action of Φ on GL(V ),
the line L ⊆ V ′ is stable under the Frobenius structure. This ends the proof. �

Theorem 2.2.2. For every smooth connected variety X the statement MS(X) implies P(X).

Proof. We have to prove that Stab(S•) ⊆ G(M). By Proposition 2.2.1, there exists an overcon-
vergent F -isocrystal N † ∈ 〈M†〉F and a rank 1 sub-F -isocrystal L ⊆ N , such that G(M) is the
stabiliser of the line L := ωx(L) ⊆ ωx(N ) := V . To prove the result it is enough to show that
Stab(S•) stabilizes L. Let L be the †-hull of L in N and write L for ωx(L). Let s be the slope of
L and V ≤s ⊆ V the subspace of slope smaller or equal than s. Assuming MS(X), we know that
L = L ∩ V ≤s. Since L ⊆ N admits by definition a †-extension, Stab(S•) ⊆ G(M†) stabilizes L.
On the other hand, Stab(S•) stabilizes V ≤s because N is an object in 〈M†〉F . This implies that
Stab(S•) stabilizes L, thus G(M) = Stab(S•) as we wanted. �

Corollary 2.2.3. Let X be a smooth connected variety such that MS(U) is true for every open
U ⊆ X. If M† is an overconvergent F -isocrystal over X, then π0(G(M)) = π0(G(M†)).

Proof. (1) We first prove that the map π0(G(M)) → π0(G(M†)) is surjective. For this we do
not need the previous theorem. Write 〈M†〉fin and 〈M〉fin for the Tannakian subcategories of
objects with finite monodromy groups. We have to show that the functor 〈M†〉fin → 〈M〉fin

is fully faithful4 and closed under subquotients. Note that 〈M†〉fin and 〈M〉fin are semi-
simple categories so that the full faithfulness already implies that the essential image is
closed under subquotients, because irreducible objects are sent to irreducible objects. Let

4One can actually prove that the entire functor 〈M†〉 → 〈M〉 is fully faithful. The speaker will eventually write

down the general proof somewhere.
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Γ be a (finite) set of representatives of the isomorphism classes of the irreducible objects
in 〈M†〉fin. Write N † for the direct sum of the objects in Γ. Looking at the internal homs
it is enough to show that HomIsoc(X)(1,N ) has dimension 1. Write P ⊆ N for the great-

est subobject of N isomorphic to 1
⊕n for some n. Since 〈M†〉fin is stable under F ∗, we

have that F ∗N † ' N † so that N † can be endowed with some Frobenius structure Ψ. By
the maximality of P, the Frobenius structure Ψ preserves P ⊆ N . Thus the inclusion is
also an inclusion (P,Ψ|P) ⊆ (N ,Ψ) of F -isocrystals. Note that the isocrystal (P,Ψ|P)
is †-extendable. By the full faithfulness theorem, the inclusion is induced by an inclusion
(P†,Ψ|P†) ⊆ (N †,Ψ). By the construction of N †, then 1

⊕n = P† ⊆ N † has rank 1. This
concludes the proof.

(2) To prove that π0(G(M)) → π0(G(M†)) is an isomorphism knowing (1), it is harmless to
shrink X to some dense open U . This follows from two observations. First, by Theo-
rem 1.2.3, π0(G(M†))→ π0(G(M†|U )) is an isomorphism. The second observation is that
π0(G(M))→ π0(G(M|U )) is surjective. To prove this, as in (1), it is enough to prove that
〈M〉fin → 〈M|U 〉fin is fully faithful. In addition, it is enough to prove the full faithfulness
for objects in 〈M〉fin endowed with Frobenius structure. Then we can apply Katz–Crew
and deduce the result from the analogous result for p-adic representations of the étale fun-
damental group of normal varieties.

(3) We assume that M admits the slope filtration and M† is semi-simple. By Theorem 2.2.2,
G(M) is a parabolic subgroup of G(M†). The subgroup G(M†)◦ ∩ G(M) ⊆ G(M†)◦ is
then connected because it is a parabolic subgroup of a connected group. This shows that
the map π0(G(M))→ π0(G(M†)) is injective and hence it is an isomorphism.

�

2.3. A tame Lefschetz theorem. The main issue to reduce MS(X) to the curves case is due
to the wild ramification. We would like to find a smooth connected curve C ⊆ X such that
πIsoc1 (C) � πIsoc1 (X). This is for example possible for the étale fundamental group in characteristic
0 or for the tame étale fundamental group in positive characteristic. The failure of the existence
of such a nice curve for the entire étale fundamental group in positive characteristic is already
clear for A2

k. Suppose that we found a curve C ⊆ A2
k such that πét

1 (C) → πét
1 (A2

k) is surjective.
Suppose that C is cut by the equation f(x, y) = 0. Then we can consider the connected finite étale
Artin–Schreier cover X → A2

k defined by tp− t−f(x, y) = 0. The fibre product X×C A2
k is a trivial

cover of C, so that the image of πét
1 (C) is contained in πét

1 (X) ( πét
1 (A2

k), contradiction.

Definition 2.3.1. If Y is smooth and proper variety, D ⊆ Y is a simple normal crossing and
X := Y \D, we say that an overconvergent isocrystal overX is docile if it admits a log-extension with
respect to D with nilpotent residues. We denote the category of docile overconvergent isocrystals
by Isoc(X)†,doc.

Abe and Esnault proved the following Lefschetz theorem for docile overconvergent isocrystals
over perfect fields. This corresponds to the “tame setting”.
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Theorem 2.3.2 ([AE18]). Let Y ⊆ Pnk be a smooth connected projective variety of dimension ≥ 2

and D a simple normal crossing divisor. For every smooth curve C ⊆ Y which is a complete
intersection of hypersurfaces intersecting transversally D, if we write C for C \D, the functor

Isoc(X)†,doc → Isoc(C)†,doc

is fully faithful.

Unluckily this is not sufficient to prove MS(X) in higher dimension. We will explain how to
refine their result and prove the following theorem.

Theorem 2.3.3. Let Y ⊆ Pnk be a smooth connected projective variety of dimension ≥ 2 and D a

simple normal crossing divisor. IfM† is a docile overconvergent F -isocrystal over X := Y \D with
respect to D, then there exists a smooth connected curve C ⊆ X such that the restriction functor

〈M†〉 → 〈M†|C〉

is an equivalence of categories.

To prove Theorem 2.3.3 we will also need P(X) for smooth connected curves, which follows from
Theorem 1.1.3 and Theorem 2.2.2. A first result in the direction of Theorem 2.3.3 is the following
well-known isoclinic Lefschetz theorem.

Proposition 2.3.4 (after Pink–Serre). Let X be a smooth connected variety and N a finite direct

sum of isoclinic F -isocrystal over X. There exists a connected finite étale cover X̃ → X with

the property that for every smooth connected curve C ⊆ X such that X̃ ×X C is connected, the
restriction functor

〈N〉F → 〈N|C〉F
is an equivalence of categories.

Proof. Since 〈N〉F contains the F -isocrystals coming from k, we reduce to the case when N is
unit-root. Thanks to Katz–Crew theorem, it is enough to prove the analogous statement for p-adic
representation of the étale fundamental group. In this case we can apply Pink–Serre result [Ser89,
§10.6], [Kat90, Key Lemma 8.18.3]. The finiteness of the étale cover follows from the fact that the
image of the p-adic representation is a p-adic Lie group and its Frattini is an open subgroup. �

The next subtle is a consequence of the property P(X) and it helps to describe the subgroup
X∗(G(M†)) ⊆ X∗(G(M)) in the docile situation.

Lemma 2.3.5. Let X be a smooth connected variety such that every open U satisfies P(U) and M
a †-extendable F -isocrystal. If L ∈ 〈M〉 is †-extendable, then L† ∈ 〈M†〉. In particular, if M† is
docile along D then every rank 1 †-extendable isocrystal L ∈ 〈M〉 is unramified along D.

Proof. By Theorem 1.2.3 we may shrink X and assume that M admits the slope filtration. More-
over, we may assume without loss of generality that M† is semi-simple. Let us write G for
G(M† ⊕ L†) and G′ for G(M†). The inclusion 〈M†〉 ⊆ 〈M† ⊕ L†〉 induces a surjective mor-
phism f : G� G′. We want to prove that N := ker(f) = 1. Let P ⊆ G be the subgroup associated
to 〈M⊕L〉. By P(X) the subgroup P is a parabolic subgroup of G, thus in particular it contains a
maximal torus T of G. Since 〈M〉 = 〈M⊕L〉, the morphism f is an isomorphism when restricted
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to P , so that N ∩ P = 1. Therefore N is a finite group, because it is a normal subgroup of the
reductive group G which intersects trivially the maximal torus T . The morphism π0(f) is an iso-
morphism by Corollary 2.2.3, because both π0(G) and π0(G′) are equal to π0(P ). This implies that
N is contained in G◦, the neutral component of G. Moreover, since N is finite, it is contained in
Z(G◦) ⊆ T . This shows that N = 1, as we wanted.

The consequence follows from two facts. First, the property of being docile is preserved under the
operations of taking direct sum, tensor product, dual and subquotients in Isoc�(X). The second
one is that rank 1 docile overconvergent isocrystals have 0 residues, thus they are unramified.

�

Lemma 2.3.6. Let X be a smooth connected variety over k, D ⊆ X a divisor and N a direct sum
of isoclinic F -isocrystals over X. There exists a dense open V ⊆ D and a conic closed subscheme
Z ⊆ TX ×X V of codimension at least 1 at every fibre which satisfies the following property.

R(N , D, Z) Let C ⊆ X be a smooth curve intersecting V in a non-empty 0-dimensional subscheme and
such that TC ×X V is not entirely contained in Z. For every N ′ ∈ 〈N〉F ramified at D,
N ′|C is ramified at D ∩ C.

Proof. We may assume that D is irreducible and N is unit-root, so that we can associate to N a
p-adic representation of the étale fundamental group of X. Since the image of the inertia subgroup
of D is topological of finite type and virtually pro-p it admits finitely many cyclic quotients of prime
order. Then the final result follows from the (proof of) [Dri12, Lemma 5.1]. �

Theorem 2.3.7 (Bertini’s theorem). Let Y ⊆ Pnk be a smooth connected projective variety over k,
D a divisor of Y , V an open of D, Z a conic closed subset of TY ×Y V which has codimension 1

at each fibre, U ⊆ Y a dense open and Ũ → U a connected finite étale cover. There exists a curve
C ⊆ Y over k satisfying the following conditions.

(1) C is a smooth scheme theoretic complete intersection of hyperplanes intersecting D transver-
sally.

(2) C ×U Ũ is connected and non-empty.
(3) C intersects each irreducible component W of V and the image of TC ×Y W → TY ×Y W

is not entirely contained in Z ×V W .

Proof. By Bertini’s theorem, in the form proven in Jouanoulou Theorem 6.3, the three conditions
correspond to dense open subspaces in the Grassmannian of hyperplanes in Pnk . The result then
follows from an induction on the dimension of Y . �

Proof of Theorem 2.3.3. We want to apply Theorem 2.3.7. During the proof we will impose three
conditions on C ⊆ Y . These conditions will ensure that if C := C \ D, the restriction functor
〈M†〉 → 〈M†|C〉 is an equivalence.

We first assume that C ⊆ Y is a smooth complete intersection of hyperplanes intersecting D
transversally (Condition (1)). By Theorem 2.3.2, the restriction functor

Isoc(X)†,doc → Isoc(C)†,doc

is fully faithful.
Let U ⊆ X be a dense open whereM acquires the slope filtration and such that D′ := Y \U is a

divisor. Write CU for C ∩U and N for GrS•(M|U ). By Proposition 2.3.4, there exists a connected
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finite étale cover Ũ → U , with the property that if Ũ ×U CU is connected and non-empty then
the functor 〈N〉F → 〈N|CU

〉F is an equivalence of categories. Let us assume that CU satisfies this
condition (Condition (2)).

Consider the subgroup X∗(G(M|U ))F ⊆ X∗(G(M|U )) of rank 1 isocrystals which come from
some rank 1 F -isocrystal in 〈M|U 〉F .

Lemma 2.3.8. The group X∗(G(M|U ))F is canonically isomorphic to the group of unit-root rank
1 F -isocrystals in 〈N〉F .

Proof. First, note that rank 1 F -isocrystals are isoclinic, thus the rank 1 F -isocrystals in 〈M〉F
are the same as the rank 1 F -isocrystals in 〈N〉F . Subsequently, we show that a rank 1 isocrystal
admits at most one unit-root Frobenius structure. Let ψ1 and ψ2 be two unit-root Frobenius
structure of a rank 1 isocrystals L. The F -isocrystal (L, ψ1)⊗ (L, ψ2)∨ is an unit-root F -isocrystals
coming from k. Thus, by the Dieudonné–Manin classification it is the unit object of F-Isoc(U), as
we wanted. Finally, we note that every rank 1 F -isocrystal has integral slope, thus after twist by
a rank 1 F -isocrystal over k it becomes unit-root. �

We also define X∗(G(M|CU
))F ⊆ X∗(G(M|CU

)), X∗(G(M†|U ))F ⊆ X∗(G(M†|U )),... in the
analogous way and we have for X∗(G(M|CU

))F ⊆ X∗(G(M|CU
)) the analogue of Lemma 2.3.8.

Since 〈N〉F → 〈N|CU
〉F is an equivalence, by Lemma 2.3.8, it follows that X∗(G(M|U ))F =

X∗(G(M|CU
))F . By Lemma 2.3.6, there exists a dense open V ⊆ D′ and a conic closed subscheme

Z ⊆ TX ×X V of codimension at least 1 at every fibre which satisfies the property R(N , D′, Z).
Suppose that C satisfies the assumptions in R(N , D′, Z) (Condition (3)), write X∗(G(M|U ))ur

F ⊆
X∗(G(M|U ))F and X∗(G(M|CU

))ur
F ⊆ X∗(G(M|CU

))F for the subgroups of unramified isocrystals.
By R(N , D′, Z), we get X∗(G(M|U ))ur

F = X∗(G(M|CU
))ur
F .

We know that P(CU ) is true thanks to Theorem 1.1.3 and Theorem 2.2.2. Thus by Lemma 2.3.5,

X∗(G(M†|C))F = X∗(G(M†|CU
))F ⊆ X∗(G(M|CU

))F

is contained in X∗(G(M|CU
))ur
F = X∗(G(M|U ))ur

F . Therefore, all the rank 1 F -isocrystals in

〈M†|C〉F are restriction of rank 1 F -isocrystals over Y . Let Γ be a finite set of unit-root F -
isocrystals over C which generate X∗(G(M†|C))F and write P|C for their direct sum. By the
previous observation, P|C comes from an unramified F -isocrystal P over X. Note that P is †-
extendable and P† is docile. The pullback functor 〈M† ⊕ P†〉 → 〈M†|C〉 is fully faithful because
M†⊕P† is docile. Moreover, by construction, every rank 1 F -isocrystal in 〈M†|C〉F comes from a
rank 1 F -isocrystal in 〈M† ⊕P†〉F . By Proposition 2.2.1, 〈M† ⊕P†〉 → 〈M†|C〉 is an equivalence
of categories.

On the other hand, we also know that by definition 〈M†〉 ⊆
〈
M† ⊕ P†

〉
is fully faithful and closed

under the operation of taking subquotients. Thus the functor 〈M†〉 → 〈M†|C〉 is fully faithful and
the essential image is closed under subquotients. This implies that it is an equivalence, as we
wanted. It remains to show that a curve C with these three conditions exists. This is guaranteed
by Theorem 2.3.7. �

2.4. Some consequences. Thanks to the reductions as in §1.2 and Kedlaya’s semistable reduction
theorem, Theorem 2.3.3 implies the following result.
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Theorem 2.4.1 (Tsuzuki, D’Ad). For every smooth connected variety X over a perfect field of
positive characteristic, MS(X) is true.

As a consequence, by Theorem 2.2.2, we prove the parabolicity conjecture.

Theorem 2.4.2. For every smooth connected variety X over an algebraically closed field of positive
characteristic, P(X) is true.

Corollary 2.4.3. Let M† be a semi-simple overconvergent F -isocrystal which admits the slope
filtration. The natural functor α : 〈M†〉 → 〈M〉 admits a left adjoint β. Moreover β admits left
derived functors Liβ (without passing to the ind-categories) and they vanish for i greater than the
dimension of G(M†)/G(M).

Proof. This follows from P(X) thanks to the standard theory on the parabolic induction. �

Definition 2.4.4. We say that a †-extendable F -isocrystal over X is PBS5 (pure in bounded
subobjects) if for every connected open U ⊆ X, the isoclinic subobjects of the restriction have
minimal generic slope.

We prove the following generalization of Tsuzuki’s result over curves.

Corollary 2.4.5. If M is a †-extendable F -isocrystal over a smooth connected variety over a pos-
itive characteristic perfect field, then there exists a unique filtration 0 = P−1(M) ( P0(M) ( · · · (
Pn(M) =M of †-extendable F -isocrystals such that for every i ≥ 0, the quotient Pi(M)/Pi−1(M)
is PBS with minimal generic slope ti ∈ Q and t0 > t1 > · · · > tn.

Proof. After shrinking the variety in order to get the slope filtration, we construct Pn−1(M) as the
†-hull of the direct sum of the isoclinic subobjects of M which do not have minimal generic slope.
By MS(X), we know that S0(M) ∩ Pn−1(M) = 0 so that if M 6= 0 then M/Pn−1(M) 6= 0. One
can easily check thatM†/Pn−1(M†) 6= 0 is PBS by construction. By induction on the rank ofM†,
we prove the result. �

Definition 2.4.6. A pair (M, ι) is a †-compactification of N if M is a †-extendable F -isocrystal
and ι : N ↪→ M is an injective morphism with N = M. A morphism (M1, ι1) → (M2, ι2) of
†-compactifications is a morphism ψ : M1 → M2 of F -isocrystals such that ψ ◦ ι1 = ι2. We will
often drop ι in the notation. We say that a weakly final object of the category of †-compactifications
of N is a minimal †-compactification of N .

We have the following stronger form of Kedlaya’s conjecture.

Corollary 2.4.7. If N is isoclinic and it embeds in a †-extendable F -isocrystal, then it admits a
minimal †-compactification.

Proof. Since the category of F -isocrystals is noetherian, it is enough to prove that for every
pair (M1, ι1), (M2, ι2) of †-compactifications of N , we can find isomorphic †-compactifications
(M′1, ι′1) ' (M′2, ι′2) with (surjective) morphisms (Mi, ιi) � (M′i, ι′i). Write M for M1 ⊕M2 and

consider the inclusion of N inM induced by ι1 and ι2. Write N for the †-hull of N inM. We claim
that ι1 : N →M1/(M1∩N ) and ι2 : N →M2/(M2∩N ) are injective. Indeed, after shrinkingX in

5This is the dual of Tsuzuki’s notion of PBQ overconvergent F -isocrystals.
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order to acquire slope filtrations, by MS(X) we haveM1∩N ∩ι1(N ) ⊆M1∩S0(N ) =M1∩N = 0
and the same is true for ι2. Finally we get

M1/(M1 ∩N ) 'M/N 'M2/(M2 ∩N )

which concludes the proof.
�

Remark 2.4.8. If N is isoclinic and admits a †-compactification N ⊆ N , then the minimal
†-compactification is simply N ⊆ Pn(N )/Pn−1(N ).

2.5. An application to abelian varieties. Let F/Fp be a finitely generated extension and let A
be an abelian variety over F . We use next immediate consequence of MS(X) to prove a result on
the separable torsion points of A.

Corollary 2.5.1. Let M be a †-extendable F -isocrystal over X. If N is an isolinic subobject of
maximal slope, then N is †-extendable.

Theorem 2.5.2. If End(A)⊗Z Qp is a division algebra, then the group A(Esep)[p∞] is finite.

Proof. The proof is by contradiction. Suppose that the group A(Esep)[p∞] is infinite, then the

p-divisible group AEsep [p∞]/Esep admits Qp/Zp as a subgroup. Let H̃ be the maximal p-divisible

constant subgroup of AEsep [p∞]. By Galois descent, H̃ descends to some étale p-divisible group
H/E. Let X be a smooth connected variety over Fp with function field E and such that A and H
have good models over X. Choose an abelian scheme A/X which is a model of A.

Let M be the crystalline Dieudonné module of A[p∞] and N the crystalline Dieudonné module
of the model of H in A[p∞]. The F -isocrystal N is a quotient ofM. As H is étale, the F -isocrystal
N is unit-root. On the other hand, M is †-extendable. Therefore, by Corollary 2.5.1, the same is
true for N . Thanks to the theory of weights, the overconvergent F -isocrystal M† is semi-simple
in the category of overconvergent F -isocrystal. Thus N (M is actually a direct summand of M.
This implies that End(M) contains some non-trivial idempotent. Thanks to de Jong’s theorem,
End(A)⊗Z Qp ' End(M). This leads to a contradiction since End(A)⊗Z Qp is a division algebra
by assumption. �

Question 2.5.3. Let f : A → X be an abelian scheme over a smooth connected variety X defined
over an algebraically closed field of characteristic p. If A is generically traceless, can R1fcrys∗OA
have a †-extendable unit-root subquotient?
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