
EDGED CRYSTALLINE COHOMOLOGY

MARCO D’ADDEZIO

In the memory of Pierre Berthelot

Abstract. We develop a unified foundation for crystalline, convergent, and rigid cohomology

through a new family of ringed sites, the τ -edged crystalline sites and τ -edged convergent sites. They

are parametrised by certain functions τ called edge-types. For linear edge-types, these yield inte-

gral versions of rigid cohomology and overconvergent F -isocrystals. For exponential edge-types, the

sites realise the conjectured log-decay crystalline cohomology theories, with associated F -isocrystals

matching Kramer-Miller’s coordinate-defined F -isocrystals. Our approach goes beyond the usual

finite-type setting and it is robust enough to support a stacky approach. To analyse rational func-

tions with bounded poles we introduce the notion of marked schemes. This formalism offers a

convenient framework for studying pole behavior beyond the traditional confines of log geometry.
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1. Introduction

In the recent development of p-adic Hodge theory, driven by new techniques such as perfectoid
geometry, prismatic cohomology, and Cartier–Witt stacks, convergent and rigid cohomology have
remained somehow peripheral to the main advances. This article aims to take a first step towards
including Berthelot’s theory within the contemporary landscape of p-adic cohomology theories.

1.1. Crystalline and rigid cohomology. In characteristic p, the two main p-adic cohomology the-
ories are rigid cohomology and crystalline cohomology. Rigid cohomology, constructed by Berthelot,
possesses desirable properties such as Poincaré duality, the Lefschetz trace formula, and a theory of
weights as for ℓ-adic étale cohomology. However, establishing finiteness results for its cohomology
groups remains challenging. Notably, the coherence of the higher direct image of overconvergent
F -isocrystals under smooth and proper morphisms, known as Berthelot’s conjecture, remains an
open problem [Laz16].

On the other hand, crystalline cohomology, pioneered by Grothendieck and chiefly developed by
Berthelot and Ogus, is not well behaved for non-proper or singular varieties. Nonetheless, the finite-
ness statements in the smooth and proper setting are simplified by the comparison with algebraic de
Rham cohomology. The crystalline analogue of Berthelot’s conjecture has been solved [Mor19, Ap-
pendix], [DTZ23], where the finiteness is established through the coherence of higher direct images
of coherent sheaves under proper morphisms. Another significant strength of crystalline cohomology
lies in its broader applicability: it is naturally defined for non-Noetherian schemes and it can be
used in perfect geometry. This often enables reductions to quasiregular semi-perfect schemes, where
crystalline cohomology is governed by Fontaine’s ring Acris. The flexibility of crystalline cohomology
allows a stacky approach à la Simpson, as developed by Bhatt–Lurie and Drinfeld.

Given the strengths and weaknesses of rigid and crystalline cohomology, the motivation behind
edged crystalline cohomology is to amalgamate the desirable aspects of both. Another work along
these lines is developed in [Lan23].

1.2. Marked algebraic geometry. To define edged crystalline cohomology, we introduce the
notion of marked schemes, a generalization of modulus pairs defined in [KMSY21]. The theory
of marked schemes provides a natural framework for studying regular functions of schemes with
poles bounded at the designated marking. With this notion, we are able to construct the marked
infinitesimal site of a marked scheme X over a divided power ring (A,A/I, γ). This consists of
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infinitesimal extensions B ↠ B/J with B/J further endowed with a marking. On this site we
construct for every edge-type τ a filtered sheaf of A-algebras Oτ

cris. This is obtained by taking
divided power envelopes, keeping the poles bounded at the marking as dictated by τ .

1.3. Log-decay crystalline cohomology. Wan proved in [Wan96] that the L-function of log-
decay F -isocrystals with parameter r ∈ R>0 (i.e., the growth of p-adic valuations of the coefficients

is 1
r logp) over An

Fps
is p-adic meromorphic in the open disk of radius p1/r. On the other hand,

Emerton and Kisin proved in [EK01] that the L-function of unit-root F -isocrystals (corresponding
to the limit case r → ∞) is p-adic meromorphic on the closed disk of radius 1. They employed
Katz’s cohomological formula, formulated with étale cohomology. Wan expected a variant of Katz’s
cohomological formula, adapted to the log-decay context, that would explain his result. In particu-
lar, he expected a log-decay crystalline cohomology theory with a suitable Lefschetz trace formula.
Our θr-edged crystalline cohomology provides a promising candidate for such a theory and could
be used to reinterpret and extend his result.

Acknowledgments. It is a pleasure to thank Bruno Chiarellotto, Hélène Esnault, Luc Illusie,
Kiran Kedlaya, Shane Kelly, Christopher Lazda, Hiroyasu Miyazaki, Matthew Morrow, Mauro
Porta, Kay Rülling, Peter Scholze, and Daqing Wan for all the enlightening discussions on the topic
that greatly influenced this article.

The author was funded by the Max-Planck Institute for Mathematics, the Deutsche Forschungsge-
meinschaft (project ID: 461915680), and the Marie Sk lodowska-Curie Actions (project ID: 101068237).
He was also hosted by the Institut de Mathématiques de Jussieu-Paris Rive Gauche and the Institut
de Recherche Mathématique Avancée in Strasbourg.

2. Marked algebraic geometry

The primary goal of this section is to construct the category of marked schemes, which generalises
the category of modulus pairs introduced in [KMSY21].

2.1. Marked rings.

Definition 2.1.1. A simply marked ring is a pair (A, I−1
A ) with A a ring1 and IA ⊆ A an ideal

which is invertible2 as an A-module. A morphism of simply marked rings (A, I−1
A )→ (B, I−1

B ) is a

morphism of rings A→ B such that IB ⊆ IAB. We denote by Ringsim the (big) category of simply

marked rings. If IA = (f) we also write (A, f−1) for the simply marked ring (A, I−1
A ).

Example 2.1.2. If (A, f−1) and (B, g−1) are simply marked rings with principal ideals, a ring
morphism φ : A→ B defines a morphism of simply marked rings if and only if φ(f)|g. In this case,
φ extends naturally to a morphism Af → Bg which sends 1

fA ⊆ Af to 1
gB ⊆ Bg.

Definition 2.1.3. We denote by Ring the category of commutative rings. There is a natural faithful
functor v : Ringsim → Ring obtained by forgetting the ideal. This functor admits a fully faithful

left adjoint u : Ring → Ringsim, which sends a ring A to the simply marked ring (A, 1). If not said

1In this article, by ring we always mean a commutative, unital, and associative ring.
2There is a generalisation of the theory where the ideals are not asked to be invertible. The categories we construct

in this article should be thought as the “Cartier objects” of larger categories of marked rings and marked schemes.
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differently, we use u to compare commutative rings and simply marked rings. We will say that an
object in the essential image of u is a trivially marked ring.

Lemma 2.1.4. The category of simply marked rings does not admit coproducts.

Proof. Suppose that (A, I−1
A ) was the coproduct of (Z[x], x−1) and (Z[y], y−1) in Ringsim. If we

write xA, yA ∈ A for the images of x and y, we have by definition that the ideal IA is contained in
(xA) ∩ (yA). By the universal property of (A, I−1

A ), we get the following commutative diagram of
simply marked rings

(A, I−1
A ) (Z[x, y], x−1y−1)

(Z[t], t−1) (Z[t], t−2),

φ2

φ1

where x 7→ t and y 7→ t. If K is the kernel of φ1 : A → Z[x, y], by the previous observation we
deduce that

IA +K ⊆ ((xA) +K) ∩ ((yA) +K) = (xAyA) +K.

By projecting this containment to Z[t], this implies that φ2(IA) ⊆ (φ2(xAyA)) = (t2), contradicting
the fact that t lies in φ2(IA). □

In order to make geometric operations, we want to enlarge the category to allow all finite colimits.

Definition 2.1.5. Let A be a ring and let {IA,ℓ}ℓ∈L be a finite set of invertible ideals of A. The

marking of A associated to {IA,ℓ}ℓ∈L is the functor hA : Ringsim → Set which sends R ∈ Ringsim to
the subset ⋂

ℓ∈L
Hom((A, I−1

A,ℓ), R) ⊆ Hom(A,R).

A marked ring is the datum of a ring A and a marking hA associated to some finite set of invertible
ideals of A. A morphism (A, hA) → (B, hB) of marked rings is a morphism A → B of rings such

that the induced morphism3 hB → hA sends hB(R) to hA(R) for every R ∈ Ringsim. We denote by
Ring the category of marked rings. We will see in Lemma 3.2.4 that a marked ring is determined
by its polar filtration.

Notation 2.1.6. If (A, hA) is a marked ring associated to the set of invertible ideals {IA,ℓ}ℓ∈L,

we will also denote it by (A, I−1
A,ℓ)ℓ∈L. Nonetheless, note that hA does not determine uniquely the

family {IA,ℓ}ℓ∈L, so that (A, I−1
A,ℓ)ℓ∈L is only one of many possible presentations of (A, hA).

Lemma 2.1.7. If A = (A, I−1
A,ℓ)ℓ∈L is a marked ring and for some ℓ1 ̸= ℓ2 ∈ L we have IA,ℓ1 ⊆ IA,ℓ2,

then (A, I−1
A,ℓ)ℓ∈L = (A, I−1

A,ℓ)ℓ∈L\{ℓ2}. In particular, if A is a valuation ring, then A is simply marked.

Proof. This follows from the fact that for every marked ring R ∈ Ringsim, we have

Hom((A, I−1
A,ℓ1

), R) ⊆ Hom((A, I−1
A,ℓ2

), R).

□

3Note that for rings we use the Yoneda embedding of Ringop rather than Ring.
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Definition 2.1.8. We say that a marked ring A is principal if it can be written in the form
(A, I−1

A,ℓ)ℓ∈L with each IA,ℓ principal. If {fℓ}ℓ∈L are generators of {IA,ℓ}ℓ∈L we will also write

(A, f−1
ℓ )ℓ∈L rather than (A, I−1

A,ℓ)ℓ∈L. If A = (A, f−1
ℓ )ℓ∈L is a principal marked ring, we say that an

element f ∈ A is a slicing element of A if√
(f) =

√∏
ℓ∈L

(fℓ).

Construction 2.1.9. Given a ring A and a locally principal ideal I there is a minimal quotient
A↠ Ã such that IÃ is invertible in Ã. This corresponds to the ring of global sections of the blowup
of Spec(A) at V (I). If I = (f), then Ã = A/K where

K :=
⋃
i≥1

(0 : (f i)).

Definition 2.1.10. Let (A, hA) be a marked ring. A marked envelope of a ring homomorphism
A→ B is a marked ring (D,hD) endowed with a morphism (A, hA)→ (D,hD) such that for every
marked ring homomorphism (A, hA)→ (C, hC) such that A→ C factors through B, there exists a
factorisation

(A, hA)→ (D,hD)→ (C, hC).

Lemma 2.1.11. For a marked ring (A, hA) and a ring homomorphism A → B, there exists a
unique marked envelope.

Proof. If (A, hA) = (A, I−1
A,ℓ)ℓ∈L, then (D,hD) = (B̃, (IA,ℓB̃)−1)ℓ∈L. □

Lemma 2.1.12. The category Ring has finite colimits and finite products and their formation
commutes with the forgetful functor v : Ring→ Ring. The initial object is (Z, 1) and the final object
is (0, 0).

Proof. If (A, I−1
A ) is a simply marked (C, 1)-algebra and (B, 1) is a trivially marked C-algebra,

then the fibre coproduct (A, I−1
A )⊗(C,1) (B, 1) is the marked envelope of A→ A⊗C B, denoted by

(D, I−1
D ). Indeed, for every simply marked ring R and every pair

(φ1, φ2) ∈ Hom(A,R)×Hom(C,R) Hom(B,R)

we have

(φ1 ⊗ φ2)(IA ⊗B)R = φ1(IA)R.

Therefore, we get

Hom((D, I−1
D ), R) = Hom((A, I−1

A ), R)×Hom(C,R) Hom(B,R).

From this we deduce that if (A, I−1
A,ℓ)ℓ∈L and (B, I−1

B,m)m∈M are marked rings over Spec(C, I−1
A,n)n∈N ,

the fibre coproduct is the marked ring

(D, (IA,ℓD)−1, (IB,mD)−1)ℓ∈L,m∈M

with D the minimal quotient of A ⊗C B which makes all the ideals invertible. Moreover, if we
have a double arrow f, g : (A, I−1

A,ℓ)ℓ∈L → (B, I−1
B,m)m∈M and C is the coequaliser at the level of
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rings, then the coequaliser as marked rings is the marked envelope of B → C. The product
(A, I−1

A,ℓ)ℓ∈L × (B, I−1
B,m)m∈M is the marked ring

(A×B, I−1
A,ℓ ×B,A× I

−1
B,m).

□

Remark 2.1.13. There is also a nice ∞-category of animated marked rings. One first starts with
the ∞-category C = AnRingsim of animated simply marked rings. The objects of the homotopy
category hC are defined to be surjections (at the level of π0) of animated rings (A ↠ A0) and the
morphisms (A ↠ A0) → (B ↠ B0) are homotopy classes of morphisms of animated rings A → B
such that B → B ⊗L

A A0 factors through B0 (up to homotopy). This category is endowed with a
natural functor v : hC → hAnRing which sends (A ↠ A0) to A. Then C is defined as the fibre
product AnRing ×hAnRing hC as ∞-categories.

2.2. Marked schemes.

Definition 2.2.1. A premarked scheme is a pair X = (X,hX), where X is a scheme and

hX : Ringsim → Set

is a subfunctor of the composition hX ◦ v, with v : Ringsim → Ring the forgetful functor. We say
that X is the underlying scheme of X. A morphism of premarked schemes X → Y is a morphism
of schemes X → Y such that hX → hY sends hX(R) to hY (R) for every R ∈ Ringsim. We denote
by Sch∼ the (big) category of premarked schemes.

Definition 2.2.2. The category of premarked schemes is naturally fibred over Sch via the faithful
functor v : Sch∼ → Sch which sends (X,hX) 7→ X. If (X,hX) is a premarked scheme and T → X
is a morphism of schemes, we write hT for hX ×hX

hT and we say that a morphism of premarked
schemes is minimal if it is of the form (T, hT )→ (X,hX).

Definition 2.2.3. There is a canonical fully faithful functor Ringop → Sch∼ which sends A =
(A, hA) to Spec(A) := (Spec(A), hA). We say that a premarked scheme isomorphic to Spec(A) for
some marked ring A is an affine marked scheme. A marked scheme is a premarked scheme (X,hX)
such that for some Zariski covering {Ui → X}i∈I all the restrictions (Ui, hU i

) are affine marked
schemes. We denote by Sch ⊆ Sch∼ the full (big) subcategory of marked schemes.

A pair (X, I−1
X ) where X is a scheme and IX is an invertible quasi-coherent sheaf of ideals of X

defines a marked scheme. We say that a marked scheme of this form is a simply marked scheme.
A principal marked affine scheme is the spectrum of a principal marked ring. We have a functor
u : Sch→ Sch sending X to (X,OX).

Remark 2.2.4. The notion of modulus pair in [KM21] coincides with the one of a simply marked
scheme.

Lemma 2.2.5. The composition hX ◦ u is represented by an open affine immersion j : Xι ↪→ X.

Proof. This can be checked Zariski locally on X. When X = Spec(A, I−1
A,ℓ)ℓ∈L, we have that

Xι = Spec(A) \
⋃
ℓ∈L

V (IA,ℓ).
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□

Definition 2.2.6. For a marked ring A we denote by Aι the ring Γ((Spec(A))ι,O). Concretely,
when A = (A, f−1), we have Aι = Af .

Lemma 2.2.7. The category Sch has finite limits and arbitrary coproducts. The final object is
Spec(Z, 1) and the initial object is ∅ := Spec(0, 0).

Proof. This follows from Lemma 2.1.12. □

2.3. Generalities on marked schemes.

Lemma 2.3.1. Let (A, hA) be a marked ring and let (B, I−1
B ) be a simply marked ring. A morphism

A→ B of rings induces a morphism of marked rings if and only if for every maximal ideal m ⊆ B,
the induced morphisms (A, hA) → (Bm, I

−1
Bm

) are morphisms of marked rings. In particular, hA is

determined by the value on the marked rings R ∈ Ringsim with R a local ring.

Proof. It is enough to prove that for every ideal J ⊆ B and b ∈ B we have that b ∈ J if and only
if b

1 ∈ JBm for every maximal ideal m ⊆ B. By replacing B with B/J , we may assume J = (0).
Then the result is well-known. □

Construction 2.3.2. When (A,Σ−1
A ) be a principal marked ring with ΣA = {f1, . . . , fn}, we write

A[ x
f1
, . . . , x

fn
] or A[ x

ΣA
] for the subring of Aι[x] generated by x

fi
. We have a canonical map

(A,Σ−1
A )→ (A[ x

ΣA
], x−1).

Lemma 2.3.3. Let (A, I−1
A ) be a simply marked ring and (B, g−1

1 , . . . , g−1
n ) a principal marked ring.

A ring homomorphism φ : A → B induces a morphism of marked rings if and only if there exist
ai ∈ IA and bij ∈ B for 1 ≤ i ≤ m and 1 ≤ j ≤ n such that in Bι we have∑

i,j

φ(ai)bij
gj

= 1.

Proof. Let us first show that the condition is necessary. By definition, the induced morphism

(A, I−1
A )→ (B[ x

g1
, . . . , x

gn
], x−1)

is a morphism of marked rings if and only if there exist a1, . . . , am ∈ IA and elements P1, . . . , Pm ∈
B[ x

g1
, . . . , x

gn
] such that

m∑
i=1

φ(ai)Pi = x.

Looking at the degree 1 part of this equation, we infer that there exist bij ∈ B such that

m∑
i=1

φ(ai)

n∑
j=1

bij
x
gj

= x.

We deduce the desired condition. On the other hand, assuming that the condition is satisfied, we
have to show that for every morphism

ψ : (B, g−1
1 , . . . , g−1

n )→ (C, h−1)
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of marked rings, the composition ψ ◦ φ defines a morphism of marked rings. By assumption, for
every 1 ≤ j ≤ n there exists cj ∈ C such that ψ(gj)cj = h. This implies that∑

i,j

ψ(φ(ai))ψ(bij)cj =
∑
i,j

ψ
(
φ(ai)bij

gj

)
ψ(gj)cj = h,

showing that h ∈ IAC as we wanted.
□

Corollary 2.3.4. For every principal marked ring (A,Σ−1
A ) we have the following canonical iso-

morphism
(A,Σ−1

A ) = (A[ x
ΣA

], x−1)×Aι A.

Definition 2.3.5. We denote by M the marked scheme Spec(Z[t], t−1). For a marked ring A, there
is a natural inclusion of sets M(A) ↪→ A obtained by taking the image of t in A.

Lemma 2.3.6. For a marked ring A and an element f ∈ M(A) ⊆ A, there exists a unique g ∈ Aι

such that fg = 1 in Aι. In other words,

M(A) ⊆ A ∩ (Aι)∗.

Proof. A morphism of marked rings φ : (Z[t], t−1) → A which sends t 7→ f induces a morphism
φ̃ : Z[t]t → Aι. We can then take g := φ̃(1t ). □

Lemma 2.3.7. If A = (A, f−1
1 , . . . , f−1

n ), then M(A) is the set of g ∈ A ∩ (Aι)∗ such that
n∑

i=1

ai
fi

= 1
g

for some ai ∈ A.

Proof. This follows from Lemma 2.3.3. □

For our purposes, it will be enough to endow the category of marked schemes with a naive Zariski
topology. In [D’A25], we also study finer topologies, such as the v-Zariski topology and the v-étale
topology.

Definition 2.3.8. We say that a minimal morphism Y → X is an open (resp. closed) immersion
if Y → X is an open (resp. closed) immersion.

Definition 2.3.9. A Zariski covering of X is a family {U i → X}i∈I of open immersions such
that {Ui → X}i∈I is a Zariski covering. We endow Sch with the topology induced by the Zariski
coverings. We call it the Zariski topology.

Construction 2.3.10. The structural sheaf O is clearly a Zariski sheaf. More in general, every
representable presheaf of Sch is a Zariski sheaf by Lemma 2.3.1. Another example is the sheaf
Oι(X) := Γ(Xι,O).

3. Filtrations

This section serves as an interlude on filtrations. We reinterpret the notion of marked rings and
marked schemes as filtered objects.
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3.1. Filtered objects.

Definition 3.1.1 (Filtered object). Let A be an abelian category satisfying condition (AB5). A
(descending exhaustive) filtration Fil of an object A ∈ A is the datum of a set

{
Fili(A)

}
i∈Z of

subobjects of A such that Fili(A) ⊆ Filj(A) for i ≥ j and

lim−→
i

Fili(A) = A.

We use the convention that Fil−∞(A) = A. A filtration is positive if Fili(A) = A for i < 0 and
negative if Fili(A) = 0 for i > 0. Given a filtration Fil of an object A and j ∈ Z, we write Fil⟨j⟩ for
the filtration defined by

Fil⟨j⟩i(A) := Fili+j(A).

A filtered object is an object of A endowed with a filtration. We denote by Fil(A) the additive
category of filtered objects of A. There is a natural embedding A ↪→ Fil(A) obtained by endowing
A ∈ A with the trivial filtration Filtriv defined by

Filitriv(A) :=

{
0 if i < 0

A if i ≥ 0.

For j ∈ Z we denote by A⟨j⟩ the filtered object (A,Filtriv⟨j⟩).

Definition 3.1.2. Recall that an additive category C is quasi-abelian if the following conditions
are satisfied.

(1) C admits kernels and cokernels.
(2) The pushout of a strict epimorphism along arbitrary morphisms is strict.
(3) The pullback of a strict monomorphism along arbitrary morphisms is strict.

Theorem 3.1.3 ([SS13, Thm 3.9]). The category Fil(A) is quasi-abelian.

Write AZ for the category Fun((Z,≥)op,A) where (Z,≥) is Z endowed with the standard poset
structure. Schapira and Schneiders prove that the natural functor

ι : Fil(A)→ AZ

admits a left adjoint κ which sends {Ai}i∈Z ∈ AZ to A := lim−→i
Ai endowed with the filtration

Fili(A) := im(Ai → A).

In addition, they prove that ι is fully faithful and strictly exact and Fil(A), via this embedding, is
closed under the operation of taking subobjects. In particular, one can check whether a sequence
Fil(A) is strict by passing to AZ.

Definition 3.1.4. If A is further endowed with an additive monoidal structure ⊗ which commutes
with filtered colimits, then Fil(A) is endowed with a natural additive monoidal structure

(A,Fil)⊗ (B,Fil) := (A⊗B,Fil),

with Filn(A⊗B) generated by the images of Fili(A)⊗ Filj(B) for i+ j = n.
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Definition 3.1.5 (Filtered algebra). If R is a ring and Mod(R) is the abelian symmetric monoidal
category of R-modules, we say that a commutative monoid object of Fil(Mod(R)) is a filtered R-
algebra. We denote by FilAlg(R) the category they form. A filtered ring is a commutative filtered
Z-algebra and we write FilRing for FilAlg(Z). Concretely, a filtered ring is a ring A endowed with a
descending multiplicative filtration Fil such that 1 ∈ Fil0(A). A module over a filtered ring (A,Fil)
is a module object over (A,Fil) in Fil(Ab).

Lemma 3.1.6. The forgetful functor FilAlg(R)→ Fil(Mod(R)) admits a left adjoint

(M,Fil) 7→ SymR(M,Fil).

Proof. The underlying algebra of SymR(M,Fil) is the symmetric tensor algebra

SymR(M) :=

∞⊕
i=0

Symi
R(M).

The filtration is the one induced by Fil on M⊗i. □

Definition 3.1.7. We say that SymR(M,Fil) is the filtered symmetric tensor algebra associated to
(M,Fil).

Lemma 3.1.8. If (A,Fil) is a filtered R-module and A has in addition an R-algebra structure,
then there exists a minimal filtration Filmult on A coarser than Fil such that (A,Filmult) is a filtered
R-algebra.

Proof. There is a natural quotient map SymR(A) ↠ A of R-algebras. The filtration of SymR(A,Fil)
induces then a filtration Filmult on A that satisfies the desired property. □

Definition 3.1.9. For a filtered sheaf of abelian groups (F ,Fil) over a site C, we defineRΓ(C, (F ,Fil))
as the object

i 7→ RΓ(C,Fili(F))

in D(AbZ).

Lemma 3.1.10. For a filtered ring (A,Fil) and a filtered (A,Fil)-module (M,Fil), there exists a
strict exact sequence ⊕

i∈I
(A,Fil)→

⊕
j∈J

(A,Fil)→ (M,Fil)→ 0

for some sets I, J .

3.2. Polar filtration of marked schemes. We want to construct a canonical negative filtration
on marked rings.

Definition 3.2.1. For a principal marked ring A the associated polar filtration Filpol is the smallest

negative filtration on Aι such that Fil0pol(A
ι) = A and for every f ∈M(A), we have f−1 ∈ Fil−1

pol(A
ι).

Lemma 3.2.2. For a principal marked ring (A, f−1
1 , . . . , f−1

n ) and a multiplicative subset S ⊆ A,
we have

S−1(Filipol(A
ι)) = Filipol((S

−1A)ι)

for every i, where S−1A is endowed with the marking induced by f−1
1 , . . . , f−1

n .
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Proof. This follows from Lemma 2.3.7. □

Definition 3.2.3. By gluing the filtration Filpol on principal marked rings using Lemma 3.2.2, we
get a negative filtration Filpol for every marked ring called the polar filtration.

Lemma 3.2.4. The functor

Ring ↪→ FilRing

which sends A to (Aι,Filpol) is fully faithful.

Proof. By going Zariski locally it is enough to prove that for every principal simply marked ring
(A, f−1) and every principal marked ring (B, g−1

1 , . . . , g−1
m ), a morphism φ : A → B upgrades to a

morphism of marked rings if and only if it induces a morphism Fil−1
pol(A

ι)→ Fil−1
pol(B

ι). By Lemma

2.3.3, we already know that φ defines a morphism of marked rings if and only if there exist bi ∈ B
such that

m∑
i=1

φ(f)bi
gi

= 1.

Dividing by φ(f) this is precisely the condition

φ( 1
f ) ∈ Fil−1

pol(B
ι),

as we wanted. □

Remark 3.2.5. Lemma 3.2.4 can be used to redefine marked rings as the essential image of the
functor.

Definition 3.2.6. A filtered scheme is a scheme X endowed with a sheaf of commutative filtered
OX -algebras (Oι

X ,Fil), such that the unit OX → Oι
X induces an isomorphism OX

∼−→ Fil0(Oι
X).

We write Xι → X for the affine morphism induced by OX → Oι
X . We write FSch for the category

they form.

Lemma 3.2.7. There exists a natural fully faithful functor

Sch ↪→ FilSch.

3.3. Filtered differential graded algebras.

Definition 3.3.1 (Filtered differential graded algebra). For a ring R, we write DGMR for the
abelian category of differential graded R-modules, namely the category of Z≥0-graded modules with
an R-linear endomorphism of degree 1. It is endowed with the usual symmetric monoidal structure
such that the braiding M ⊗R N

∼−→ N ⊗R M for homogeneous modules M,N is given by

m⊗ n 7→ (−1)deg(m)deg(n)n⊗m.

A commutative monoid object in DGMR is a differential graded algebra over R. A filtered differential
graded R-algebra is instead a commutative monoid object in Fil(DGMR). We write FDGAR for the
category they form.

Definition 3.3.2 (Hodge differential graded algebras). A Hodge differential graded algebra over R
is a filtered differential graded algebra such that

(3.1) d(Fili(Ai)) ⊆ Fili+1(Ai+1).
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for i ≥ 0. We call (3.1) the Hodge condition. We write HDGAR for the category of Hodge differential
graded algebras over R.

Remark 3.3.3. If A is an R-algebra, then the de Rham complex Ω•
A/R endowed with the Hodge

filtration is the most basic example of a Hodge differential graded algebra over R.

Lemma 3.3.4. The natural inclusion

HDGAR ↪→ FDGAR

admits a left adjoint

Hdg: FDGAR → HDGAR.

Construction 3.3.5 (Hodge filtration). Let (A,Fil) be a filtered ring over a base ring R. The
naive filtration Filnaive on Ω1

A/R is the filtration induced by the one of A by considering the tensor

product (A,Fil) ⊗A⟨0⟩ Ω1
A/R⟨0⟩. This filtration extends to a filtration Filnaive on the differential

graded algebra Ω•
A/R. Nonetheless, (Ω•

A/R,Filnaive) in general fails to satisfy the Hodge condition.

The filtration that we consider is instead

(Ω•
A/R,FilHdg) := Hdg(Ω•

A/R,Filnaive).

We say that FilHdg is the Hodge filtration of the de Rham complex of a filtered ring. We will also
denote (Ω•

A/R,FilHdg) by Ω•
(A,Fil)/R.

4. The edged crystalline site

4.1. Marked infinitesimal extensions.

Definition 4.1.1. A marked infinitesimal extension (A,A/I) is the datum of a ring quotient A↠
A/I with nilpotent kernel endowed with a marking on A/I.

Definition 4.1.2. Let (A,A/I) be a ring quotient and X a marked scheme over A/I. We write
INF(X/A) for the opposite of the category of marked infinitesimal extensions (B,B/J) over (A,A/I)

endowed with a morphism Spec(B/J) → X over A/I. We denote by (X/A)inf ⊆ INF(X/A) the

full subcategory of those (B,B/J) such that Spec(B/J)→ X is an open immersion.

Definition 4.1.3. A family of morphisms {(Bk, Bk/Jk)→ (B,B/J)}k∈K in INF(X/A) is a Zariski
covering if the following conditions are satisfied.

(1) Jk = JBk for every k.
(2) {Spec(Bk)→ Spec(B)}k∈K is a Zariski covering.
(3) for every k ∈ K the morphism Spec(Bk/Jk)→ Spec(B/J) is minimal.

The category INF(X/A) endowed with the Zariski topology is the (big) marked infinitesimal site.

Definition 4.1.4. We write Oinf for the sheaf of A-algebras over INF(X/A) given by (B,B/J) 7→
B and Iinf ⊆ Oinf for the subsheaf (B,B/J) 7→ J . We also write Minf for (Z[t], (Z[t], t−1)) ∈
INF(X/A).

Remark 4.1.5. The functoriality of the marked infinitesimal topos can be obtained as in [BS22,
Rmk. 4.3]
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4.2. Edged localisation.

Construction 4.2.1. The sheaf Oinf is endowed with the infinitesimal filtration given by

Filiinf(Oinf) := Iiinf .

For every infinitesimal extension (B,B/J), the topological spaces of Spec(B) and Spec(B/J)

coincide. Therefore, there exists an open subscheme U ⊆ Spec(B) corresponding to the open
Spec(B/J)ι ⊆ Spec(B/J). Locally on Spec(B), the open U is obtained by inverting finitely many
functions. We deduce that U is affine and we write Bι for Γ(U,OU ). We denote byOι

inf the sheaf over

INF(X/A) given by (B,B/J) 7→ Bι. We denote by Õinf ⊆ Oι
inf the image of Oinf → Oι

inf . The sheaf

Oι
inf is endowed with a natural negative filtration with Fil0pol(Oι

inf) := Õinf and Fil−1
pol(O

ι
inf) locally

generated by the inverses of the sections of Minf . The filtration is called the polar filtration. The
sheaf Oι

inf is also endowed with an infinitesimal positive filtration such that Fileinf(Oι
inf) := IeinfOι

inf .

Definition 4.2.2. An edge-type is a map of sets τ : Z>0 → N∞ := Z≥0 ∪ {∞} such that τ ̸≡ 0 and

τ(e1 + e2) ≥ τ(e1) + τ(e2)

for every e1, e2 ∈ Z>0. For an edge-type τ and a positive integer n, we denote by τn : : Z>0 → N∞
the n-th scaling of τ , defined by τn(e) = nτ(e), and by τ [n] the n-th shift of τ , defined by τ [n](e) =
τ(e+ n)− τ(n)

Definition 4.2.3. For an edge-type τ and an object A of an abelian category endowed with a
negative filtration Fil, the τ -dilation of Fil, denoted by τ ⋆Fil, is the negative filtration of A defined
by

τ ⋆ Fil−i := Fil−τ(i)

for i ≥ 0.

Definition 4.2.4. We denote by Oτ
inf = (Oι

inf ,Filτ ) the sheaf of filtered rings

Oτ
inf := (Oι

inf , τ ⋆ Fpol)⊗Oinf
(Oinf , Finf).

We say that Oτ
inf is the τ -edged localisation of Oinf . For an infinitesimal extension (B,C) over A,

write Bτ
inf ∈ FilAlg(A) for Oτ

inf(B,C). For e ≥ 0 we also write Iτ,einf for Fileinf(Oι
inf) ⊆ Oι

inf with the
filtration induced by the one of Oτ

inf .

Example 4.2.5. Let Fp[t] be the marked ring (Fp[t], t). The edge-type λ : Z>0 → N∞ defined by

λ(e) = e corresponds to the overconvergent theory (see §6.2). In this case, for every n,N > 0, we
have that

Oι
inf(Z/pN [t],Fp[t]) = Z/pN

[
t, t−1

]
and Fil0λn

= Z/pN
[
t, p

tn

]
.

Construction 4.2.6. Let φ : Z>0 → R be a map of sets. We define τφ : Z>0 → N∞ inductively by

τφ(e) := max

{
sup

φ(u)≤e
{u}, max

0<f<e
{τφ(e− f) + τφ(f)}

}
.

We say that τφ is the edge-type associated to the decay-function φ.
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Definition 4.2.7. Let φr : Z>0 → R be the decay-function φr(u) :=
logp(u)

r , where r is a positive
real number. We denote by θr the edge-type τφr . This type corresponds to the r-log-decay theory,
[K-M16], [K-M21], [K-M22].

Example 4.2.8. When r = 1 we have that θ1(e) = pe and

Fil0θ1n = lim−→
e

Z/pN
[
t,
p

tnp
, . . . ,

pe

tnpe

]
.

Example 4.2.9. Let X be the affine scheme Spec(C) over A with marking given by f ∈ C nonzero-
divisor. If (B,C) is the marked infinitesimal extension with B = C⊕Ω1

C/A with the split square-zero

C-algebra structure, we have

Fil0τ (Oι
inf) (B,C) = C ⊕ 1

fτ(1) Ω1
C/A.

Construction 4.2.10. For an infinitesimal extension (B,C) over A, an edge-type τ , and i ≥ 0 we
define

Ωτ,i
B/A

:= Ωi
B/A⟨i⟩ ⊗B B

τ

where the tensor product is in Fil(Mod(B)). We say that the complex

Bτ d−→ Ωτ,1
B/A

d−→ Ωτ,2
B/A → . . .

is the τ -edged localisation of the de Rham complex of B over A. Note that

Ωτ,i
B/A =

i∧
Ωτ,1
B/A,

where the wedge product is in FilMod(Bτ ). The constructions define filtered Oτ
inf -modules Ωτ,i

inf over
(X/A)inf

Lemma 4.2.11. For every (B,B/J) ∈ INF(X/A) and every ideal J ⊆ K ⊆ B, the morphism

Oτ
inf(B,B/J)→ Oτ

inf(B/K,B/J)

is a strict epimorphism of filtered B-modules.

Proof. By definition, it is enough to prove the statement both for (Oinf , Finf) and (Oι
inf , τ ⋆ Fpol).

The morphism (B,Filinf)→ (B/K,Filinf) is a strict epimorphism by construction. To prove that

(Bι, τ ⋆ Fpol)→ ((B/K)ι, τ ⋆ Fpol)

is a strict epimorphism we can do it locally on Spec(B), sot that we can assume B/J principal. We
then deduce the result thanks to the observation that

Minf(B,B/J)→Minf(B/K,B/J)

is surjective. □

Construction 4.2.12. For e ≥ 0 we write INFe(X/A) ⊆ INF(X/A) for the full subcategory of
those (B,B/J) with Je = 0. There is a natural morphism of sites

ιe : INFe(X/A)→ INF(X/A)
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induced by the continuous functor (B,B/J) 7→ (B/Je, B/J). We denote by Oτ
inf,e the filtered sheaf

ιe∗(Oτ
inf) over INF(X/A) and Oι

inf,e the sheaf ιe∗(Oι
inf). Note that Oτ

inf = lim←−e
Oτ

inf,e since every

(B,B/J) ∈ INF(X/A) is in INFe(X/A) for e big enough.

Lemma 4.2.13. For every e ≥ 0 have the following strict exact sequence of sheaves of filtered
Oinf-modules

0→ Iτ,einf → O
τ
inf → Oτ

inf,e → 0.

Proof. The morphism Iτ,einf → O
τ
inf is a strict monomorphism from the definition, while Oτ

inf → Oτ
inf,e

is a strict epimorphism by Lemma 4.2.11. To prove the strict exactness in the middle it is enough
to prove that the sequence of sheaves

0→ IeinfOι
inf → Oι

inf → Oι
inf,e → 0

obtained by forgetting the filtration is exact (in the middle). We can work Zariski locally on Spec(B),
so that we may assume B/J principal. If S is the multiplicative set generated by Minf(B,B/J) the
result follows from the exactness of the sequence of B-modules·

0→ Je(S−1B)→ S−1B → S−1(B/Je)→ 0.

□

4.3. Filtered divided power structures.

Definition 4.3.1. A divided power ring is a ring A endowed with an ideal I and a divided power
structure γ on I. We denote such a datum by (A,A/I, γ) and write Ring♯ for the category they
form.

Definition 4.3.2 (Filtered divided power structure). Let (A,Fil) be a filtered ring. A filtered divided
power structure on (A,Fil) is a divided power structure on Fil1(A) such that γn(Fil1(A)) ⊆ Filn(A)
for n ≥ 1. We say that a filtered ring endowed with a filtered divided power structure is a filtered
divided power ring. We write FilAlg♯(A,Fil, γ) for the category of filtered divided power rings over
(A,Fil, γ).

Proposition 4.3.3. The forgetful functor

FilAlg♯(A,Fil, γ)→ FilAlg(A,Fil)

admits a left adjoint Dγ.

Proof. For a filtered ring homomorphism (A,Fil) → (B,Fil) we have to prove that there exists a
filtered divided power ring (D,Fil, γ̄) such that

Hom(A,Fil,γ) ((D,Fil, γ̄), (C,Fil, δ)) = Hom(A,Fil) ((B,Fil), (C,Fil))

for (C,Fil, δ) ∈ FilAlg♯(A,Fil, γ). □

Definition 4.3.4 (Filtered divided power envelope). For a filtered ring (B,Fil) over (A,Fil) we say
that Dγ(B,Fil) is the filtered divided power envelope of (B,Fil) over (A,Fil, γ).
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Construction 4.3.5. For a set L and a filtered ring (A,Fil), we denote by (A{xℓ}ℓ∈L,Fil) the
filtered ring with A{xℓ}ℓ∈L the polynomial divided power algebra over A freely generated by

{xℓ}ℓ∈L endowed with the minimal filtration compatible with the one on A and such that x
[i]
ℓ ∈

Fili(A{xℓ}ℓ∈L) for i ≥ 1.

If (A,Fil) is endowed with the structure of a filtered divided power structure γ, it induces a com-

patible filtered divided power structure δ on A{xℓ}ℓ∈L such that δn(x
[m]
ℓ ) = x

[n+m]
ℓ for all n,m ≥ 0.

The filtered divided power algebra (A{xℓ}ℓ∈L,Fil, δ) over (A,Fil, γ) is the filtered polynomial divided
power algebra over (A,Fil, γ) generated by {xℓ}ℓ∈L.

Construction 4.3.6. If (B,Fil, γ) is a filtered divided power ring over A, we have a filtered divided
power de Rham complex Ω•

(B,Fil,γ)/A defined using divided power Kähler differentials. The filtration

is the minimal one compatible with the one of B and such that d(Fil0(B)) ∈ Fil1.

Lemma 4.3.7 (Filtered Poincaré Lemma). Let (B,Fil) be a filtered ring and let

(P,Fil, γ) := (B{xℓ}ℓ∈L,Fil, γ)

be a filtered polynomial divided power algebra over (B,Fil). The complex of filtered (B,Fil)-modules

B → P → Ω1
(P,Fil,γ)/B → Ω2

(P,Fil,γ)/B → . . .

is homotopy equivalent to zero. In particular, for every filtered (B,Fil)-module M , we have that

M →M ⊗B P →M ⊗B Ω1
(P,Fil,γ)/B →M ⊗B Ω2

(P,Fil,γ)/B → . . .

is strictly exact.

Proof. If L = ∗ we get the complex

(B,Fil)→
∞⊕
i=0

(B,Fil⟨−i⟩)x[i] d−→
∞⊕
i=1

(B,Fil⟨−i⟩)x[i−1]dx

which is homotopy equivalent to zero. For the general case just use that

Ω•
(P,Fil,γ)/B =

∧
ℓ∈L

Ω•
(B{xℓ},Fil,γ)/B.

□

Lemma 4.3.8. Let A be a ring, (B,Fil, γ) a divided power ring over A, and (P,Fil, γ) the divided
power ring over (B,Fil, γ) generated by {xℓ}ℓ∈L. For a filtered B-module M endowed with a flat
connection

M →M ⊗B Ω1
(B,Fil,γ)/A,

the map on de Rham complexes

M ⊗B Ω•
(B,Fil,γ)/A →M ⊗P Ω•

(P,Fil,γ)/A

is a quasi-isomorphism.
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4.4. Edged crystals. A filteredOinf -module F over INF(X/A) induces for every (B,C) ∈ INF(X/A)
a filtered O-module FB on the Zariski site of Spec(B). We say that F is locally quasi-coherent if
for every (B,C) ∈ INF(X/A) the sheaf FB is induced by some object in Fil(Mod(B)).

Construction 4.4.1. For a divided power ring (A,A/I, γ), a marked scheme X over A/I, we define
(Ocris,Filγ) to be the presheaf of filtered rings obtained by applying locally Dγ to (Oinf ,Filinf). For
an edge-type τ , we also write Oτ

cris = (Oι
cris,Filτ ) for the presheaf of filtered rings over INF(X/A)

obtained by applying Dγ to Oτ
inf . We also write Iτ,ecris for Fileτ (Oι

cris) · Oι
cris ⊆ Oι

cris endowed with the
filtration induced by Filτ by restriction. We say that Oτ

cris is the τ -localisation of Ocris. Similarly,
we also write Oτ∞

cris for the presheaf of negatively filtered rings

Õcris ⊆ Fil−1
τ1 (Oι

cris) ⊆ Fil−1
τ2 (Oι

cris) ⊆ . . .

with Õcris at level 0.

Lemma 4.4.2. For every τ , the presheaf Oτ
cris is a locally quasi-coherent filtered Oinf-module.

We have also some variants of τ -edged localisation.

Definition 4.4.3. The hyperedged localisation of Ocris is the sheaf of negatively filtered Ocris-
algebras (Oι

cris,Filℏ), where Filℏ is the minimal filtration such that Fil0ℏ(Oι
cris) = Õcris and Fil−1

ℏ (Oι
cris)

is locally generated by the inverses of the sections of Minf .

Definition 4.4.4. Let k be a perfect field, W its ring of Witt vectors, and K the fraction field of
W . For a separated scheme X of finite type over k and an edge-type τ , the τ∞-edged crystalline
cohomology complex of X is the complex

RΓτ∞-cris(X/W ) := lim−→
X⊆Y

RΓ(INF(Y /W ),Oτ∞
cris) ∈ D(AbZ)

where the colimit is over all X ⊆ Y with Y proper. Similarly the hyperedged crystalline cohomology
complex of X is the complex

RΓℏ-cris(X/W ) := lim−→
X⊆Y

RΓ(INF(Y /W ),Oℏ
cris) ∈ D(AbZ≤0)

where again the colimit is over all X ⊆ Y with Y proper. Note that when τ(1) ̸= 0, there is a
natural morphism Oℏ

cris → O
τ∞
cris which induces a morphism of complexes

RΓℏ-cris(X/W )→ RΓτ∞-cris(X/W )

in D(AbZ≤0)

Definition 4.4.5. A filtered Oτ
cris-module is a module object over Oτ

cris in Fil(Mod(Oinf)). A τ -
edged crystal over X, is a locally quasi-coherent sheaf of Oτ

cris-modules F over INF(X/A) such that
for every morphism (B2, B2/J2)→ (B1, B1/J1) in INF(X/A), the comparison morphism

F(B1, B1/J1)⊗Oτ
cris(B1,B1/J1) O

τ
cris(B2, B2/J2)→ F(B2, B2/J2)

is an isomorphism of Oτ
cris(B2, B2/J2)-modules. We write Cτ (X/A) for the category of τ -edged

crystals over X. We also say that a locally quasi-coherent filtered Oτ
cris-module F is a τ -edged quasi-

crystal if for every morphism (B2, B2/J2) → (B1, B1/J1) in INF(X/A) with B1 → B2 surjective
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and B1/J1 → B2/J2 minimal, the comparison morphism

F(B1, B1/J1)⊗Oτ
cris(B1,B1/J1) O

τ
cris(B2, B2/J2)→ F(B2, B2/J2)

is surjective.

Construction 4.4.6. For a marked infinitesimal extension (B,B/J) and e ≥ 0, we write (Be{1}, B/J)

for the product in INFe(X/A) of two copies of (B/Je, B/J). We write Ωτ,1
inf,e for the presheaf on

INF(X/A) which sends (B,B/J) to

Iτ,1inf (Be{1}, B/J)/Iτ,2inf (Be{1}, B/J).

Similarly, we define Ωτ,1
cris,e as

Iτ,1cris(Be{1}, B/J)/Iτ,2cris(Be{1}, B/J).

Finally, we write Ωτ,1
inf for lim←−e

Ωτ,1
inf,e and Ωτ,1

cris for lim←−e
Ωτ,1
cris,e.

Lemma 4.4.7. Let B → C a flat epimorphism of rings, then LC/B = 0. In particular, for every

ring homomorphism A→ B, we have Ω1
C/A = Ω1

B/A ⊗B C.

Proof. The first part is [Stacks, Tag 08R2]. By the base change triangle of the cotangent complex,
we deduce that

LC/A = LB/A ⊗L
B C.

After taking π0, this implies that Ω1
C/A = Ω1

B/A ⊗B C. □

Lemma 4.4.8. The filtered Oτ
cris-modules Ωτ,i

cris are τ -edged quasi-crystals.

Construction 4.4.9. We look at the analogue of the two universal thickenings of [Stacks, Tag
07KN] in our situation. We fix a marked infinitesimal extension (B,B/J) ∈ INF(X/A). We write

B1 for the square-free split extension B ⊕ Ω1
B/A. We get then a marked infinitesimal extension

(B1, B/J) ∈ INF(X/A). We also write B2 for the B-algebra

B ⊕ Ω1
B/A ⊕ Ω1

B/A ⊕ Ω2
B/A

with algebra structure defined by

(f, ω1, ω2, η) · (f ′, ω′
1, ω

′
2, η

′) = (ff ′, fω′
1 + f ′ω1, fω

′
2 + f ′ω2, fη

′ + f ′η + ω1 ∧ ω′
2 + ω′

1 ∧ ω2).

Lemma 4.4.10. There exist natural strict epimorphisms

Oτ
cris(B1, B/J) ↠ Ωτ,0

cris ⊕ Ωτ,1
cris

and

Oτ
cris(B2, B/J) ↠ Ωτ,0

cris ⊕ Ωτ,1
cris ⊕ Ωτ,1

cris ⊕ Ωτ,2
cris,

where we set

Ωτ,i
cris := Ωτ,i

cris(B,B/J).

https://stacks.math.columbia.edu/tag/08R2
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Proof. Since the claim is Zariski local, we may assume that the marking B/J is principal. Define

Bι := Oι
inf(B) and consider the natural embedding p0 : B ↪→ B ⊕ Ω1

B/A sending b 7→ (b, 0). Then

one verifies that (
Oι

inf(B1, B/J),Filpol
)

= (Bι,Filpol)⊗B⟨0⟩ B1⟨0⟩,
and similarly,

(B1,Filinf) = (B,Filinf)⊗B⟨0⟩

(
B⟨0⟩ ⊕ Ω1

B/A⟨1⟩
)
.

It follows that

Oτ
inf(B1, B/J) =

(
Oι

inf(B1, B/J), τ ⋆Filpol

)
⊗B1⟨0⟩ (B1,Filinf) = (Bι,Filτ )⊗B⟨0⟩

(
B⟨0⟩⊕Ω1

B/A⟨1⟩
)
.

Thus, we obtain the decomposition

Oτ
inf(B1, B/J) = (Bι,Filτ )⊕ Ωτ,1

inf (B,B/J).

Taking the filtered divided power envelope of Oτ
inf(B1, B/J) yields a strict epimorphism

Oτ
cris(B1, B/J) ↠ Ωτ,0

cris ⊕ Ωτ,1
cris,

where the kernel is generated by the divided powers γn(ω) for all n ≥ 2 and ω ∈ Ω1
Bι/A.

A similar argument shows that

Oτ
inf(B2, B/J) = (Bι,Filτ )⊕ Ωτ,1

inf (B,B/J)⊕ Ωτ,1
inf (B,B/J)⊕ Ωτ,2

inf (B,B/J),

which implies the corresponding strict epimorphism for B2. □

4.4.11. We are finally ready to define τ -edged and hyperedged crystalline cohomology

Definition 4.4.12. Let k be a perfect field, W its ring of Witt vectors, and K the fraction field of
W . For a separated scheme X of finite type over k and an edge-type τ , the category of coherent τ -
edged isocrystals over X, denoted by Isocτ (X/K), is the 2-colimit of the isogeny category of crystals
in coherent Oτ

cris-modules over INF(Y /W ) for different embeddings X ⊆ Y with Y proper.

5. The marked convergent site

5.1. Marked enlargements.

Definition 5.1.1. A p-adic ring is a p-complete ring. We write Ring∧p ⊆ Ring for the full subcat-
egory of p-adic rings. A morphism A → B is p-étale if for every e ≥ 0 the quotient A/pe → B/pe

is étale. For a p-adic ring A, we write Nm(A) ⊆ Jac(A) for the ideal of elements x ∈ A such that
xp

m ∈ (p) and we write

N∞(A) :=
√

(p) =

∞⋃
m=0

Nm(A).

Equivalently, Nm(A) is the kernel of A → A/p
Fm

−−→ A/p. We denote by Am̄ ⊆ A/p the quotient
A/Nm(A) and by A∞̄ the quotient A/N∞(A). Note that by definition we have A0̄ = A/p and

A∞̄ = A/
√

(p) = lim−→ (A0̄
F−→ A1̄

F−→ A2̄
F−→ . . . ).

For an ideal I ⊆ A containing p, we write I(m) for the ideal generated by p and the elements xp
m

with x ∈ I.
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Definition 5.1.2. A marked p-adic ring is a p-adic ring A endowed with a marking on A/N∞(A).
We define M∧

p := Spf(Zp⟨t⟩, t−1) and we denote by Amer the localisation of A with respect to the
local sections of M∧

p . The ring Amer is endowed with a natural polar filtration. Let A be a p-adic
ring and X a marked scheme over A/p. For m ∈ Z≥0, a marked enlargement of level m of X
over A, is the datum of a p-torsionfree marked p-adic ring B ∈ Alg∧

A
endowed with a morphism

Spec(Bm̄)→ X. We write ENLm(X/A) for the opposite of the category of marked enlargements of
level m over A.

Definition 5.1.3. A family of morphisms {Bk → B}k∈K in ENLm(X/A) is an étale covering if
the following conditions are satisfied.

(1) Nm(Bk) = Nm(B)Bk for every k.
(2) {Spec(Bk)→ Spec(B)}k∈K is a p-étale covering.
(3) For every k ∈ K, the morphism Spec((Bk)∞̄)→ Spec(B∞̄) is minimal.

The category ENLm(X/A) endowed with the p-étale topology is the (big) marked convergent site.

Definition 5.1.4. Let Oconv for the sheaf of A-algebras over ENLm(X/A) defined by B 7→ B and
Nm ⊆ Oconv for the subsheaf B 7→ Nm(B) for m ∈ N∞.

5.2. Meromorphic functions. Let us construct the sheaf of meromorphic functions.

Construction 5.2.1. As in the infinitesimal case, for every marked enlargement B, the topological
spaces of Spf(B) and Spec(Bm̄) coincide. Therefore, there exists an open affine formal subscheme
U ⊆ Spf(B) corresponding to the affine open Spec(Bm̄)ι ⊆ Spec(Bm̄). We write Bι for Γ(U,OU)
and we denote by Oι

conv the sheaf over ENLm(X/A) given by B 7→ Bι. We define

Omer
conv ⊆ Oι

conv

to be the subsheaf of Oconv-algebras locally generated by the inverses of the sections of Mconv. This
is called the sheaf of meromorphic functions. It is endowed with the polar filtration defined by

Fil0pol(Omer
conv) := im (Oconv → Oι

conv)

and Fil−1
pol(O

mer
conv) locally generated as a Oconv-module by the inverses of the sections of Mconv.

Example 5.2.2. Let Fp[t] be the marked ring (Fp[t], t
−1). We write Zp⟨t⟩mer

t for Omer
conv(Zp⟨t⟩,Fp[t])

endowed with its polar negative filtration. We have

Zp⟨t⟩mer
t = S−1Z⟨t⟩

where S is the multiplicative set of series congruent to tn for some n ≥ 0. Equivalently, by Weier-
strass preparation theorem, we have

S−1Zp⟨t⟩ = S−1
algZp⟨t⟩,

where Salg ⊆ S is the subset of polynomials. These meromorphic functions form a subalgebra of the

(relatively) overconvergent functions in 0, denoted by Zp⟨t⟩†t ⊆ Zp⟨t, t−1⟩, i.e., functions converging
in the annulus 1− ϵ ≤ |t|p ≤ 1 for some ϵ > 0. The polar filtration Fil−n

pol corresponds to taking the

Zp⟨t⟩-submodule of Zp⟨t⟩mer
t generated by the inverses of the series congruent to tn modulo p.
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Notation 5.2.3. For a p-adic ring A and n ≥ 0, write Fil−1
λn

(A⟨t⟩, t−1) for the A⟨t⟩-submodule of

A⟨t, t−1⟩ generated by the series of the form

1

tn

∞∑
j=0

bj
pj

tjn

with bj ∈ A (without convergence assumptions).

Proposition 5.2.4. Let A be a p-adic ring such that A/p contains an infinite field k, then

Fil−1
λn

(A⟨t⟩, t−1) = Fil−n
pol(A⟨t⟩

mer
t )cl,

where (−)cl denotes the p-adic closure in A⟨t, t−1⟩. In particular,

A⟨t⟩†t =

∞⋃
n=0

Fil−n
pol(A⟨t⟩

mer
t )cl.

Proof. Set Bn := Fil−n
pol(A⟨t⟩

mer
t ) and B̃ :=

⋃∞
n=0B

cl
n , thought as A⟨t⟩-submodules of A⟨t, t−1⟩. By

construction, B̃ is a A⟨t⟩-subalgebra of A⟨t⟩†t . We have to prove that for every n ≥ 0 and every
sequence (bj)j≥0 in A, then

f :=
1

tn

∞∑
j=0

bj
pj

tjn
∈ Bcl

n .

Choose a sequence (ci)i≥0 ∈ A with distinct reductions in k ⊆ A/p. For m ≥ 0, solve the Vander-
monde system

m∑
i=0

aic
j
i = bj for 0 ≤ j ≤ m,

where ai ∈ A. Note that the Vandermonde matrix (cji )0≤i,j≤m is invertible because the reduction
modulo p of the determinant lies in k∗. If we write

fm :=
m∑
i=0

ai
tn − cip

∈ A,

using the geometric expansion

ai
tn − cip

=
ai
tn

(
1− cip

tn

)−1
=
ai
tn

∞∑
j=0

(cip
tn

)j

we can write

fm =

∞∑
j=0

m∑
i=0

aic
j
i

pj

t(j+1)n
=

1

tn

m∑
j=0

bj
pj

tjn
+

∞∑
j=m+1

m∑
i=0

aic
j
i

pj

t(j+1)n
.

This shows that fm have the same reduction as f in (A/pm+1)[t, t−1], and this proves the desired
result. □
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6. Comparison theorems

6.1. Computing edged crystalline cohomology.

Lemma 6.1.1. If M is a locally quasi-coherent sheaf of Oinf-modules over INF(X/A), then for
every (B,C) ∈ INF(X/A) we have

H i((B,C),M) = 0

for i > 0.

Proof. This can be proven using Serre vanishing as in [Stacks, Tag 07JJ]. □

Corollary 6.1.2. If we denote by Ce the category INFe(X/A) endowed with the chaotic topology,
then for every locally quasi-coherent sheaf of Oinf-modulesM over INFe(X/A), we have

RΓ(INFe(X/A),M) = RΓ(Ce,M).

Proof. The identity Ce → INFe(X/A) induces a morphism of ringed sites

f : (INFe(X/A),Oinf)→ (Ce,Oinf).

By Lemma 6.1.1, for a quasi-coherent sheaf of Oinf -modules M, the higher direct images Rif∗M
vanish for i > 0. The result then follows from the observation that f∗M = M. See [Stacks, Tag
07JK] for more details. □

Construction 6.1.3. Let X be an affine marked scheme over A of the form Spec(C) and let e
be a positive integer. Choose a polynomial A-algebra P which admits a surjection P ↠ C. We
define J := ker(P → C) and Qe := P/Je for e ≥ 1. We denote by (Qe{∗}, C) the Čech nerve

of (Qe, C) in INFe(X/A). For every i, n ≥ 0 we write Ωτ,i
e (n) for Ωτ,i

cris(Qe(n), C). The A-modules

Ωτ,0
e (n) = Oτ

cris(Qe{∗}, C) are divided power rings over (A,Fil, γ) that we also denote by Dτ
e (n).

When n = 0 we often drop the index and we write, for example,

Dτ
e → Ωτ,1

e → Ωτ,2
e → . . .

for the τ -edged crystalline de Rham complex of (Qe, C).

Lemma 6.1.4. The marked infinitesimal extension (Qe, C) is a weakly final object of INFe(X/A).

Proof. Let (B,C ′) be another object in INFe(X/A). We choose a morphism P → B lifting the
composition P → C → C ′. If K is the kernel of B → C ′, by assumption Ke = 0, thus P → B
factors through Qe → B. By construction, we get a commutative diagram,

Qe B

C C ′,

as we wanted. □

Lemma 6.1.5. For every cosimplicial filtered module Me{∗} over Dτ
e{∗}, the cosimplicial filtered

module
Me{0} ⊗Dτ

e {0} Ωτ,i
e {0} →Me{1} ⊗Dτ

e {1} Ωτ,i
e {1} → . . .

is homotopic to zero for every i ≥ 1.

https://stacks.math.columbia.edu/tag/07JJ
https://stacks.math.columbia.edu/tag/07JK
https://stacks.math.columbia.edu/tag/07JK
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Proof. Since

Ωτ,1
e (n) = Ω1

cris(Qe(n), C)⟨1⟩ ⊗De(n) D
τ
e (n)

we deduce that Ωτ,1
e {∗} is obtained from Ω1

cris(Qe{∗}, C)⟨1⟩ by base change with respect to the
morphism of cosimplicial filtered rings De{∗} → Dτ

e{∗}. Thanks to [Stacks, Tag 07L9] the complex
Ω1
cris(Qe{∗}, C) is homotopic to zero as a De{∗}-module. The result then follows from [Stacks, Tag

07KQ]. □

Construction 6.1.6. Let M be a sheaf of filtered Oτ
inf -modules over INF(X/A). We denote by

Me{∗} the cosimplical module M(Qe{∗}, C). We also write Me for Me{0}. If M is a τ -edged
crystal the two projections pri : (Qe{1}, C)→ (Qe, C) with i = 1, 2 induce isomorphisms

pr∗1(Me)
∼−→Me{1}

∼−→ pr∗2(Me),

which define a filtered flat connection

Me →Me ⊗Dτ
e

Ωτ,1
e

with de Rham complex Me ⊗Dτ
e

Ωτ,•
e .

Proposition 6.1.7. If M is a τ -edged quasi-crystal of INF(X/A), then there exists a quasi-iso-
morphism

RΓ(INFe(X/A),M)
∼−→ (Me{0} →Me{1} →Me(2)→ . . . ).

Proof. The result follows from Corollary 6.1.2 and Lemma 6.1.4 as in [Stacks, Tag 07JN]. □

Corollary 6.1.8. IfM is a τ -edged quasi-crystal, then

Hj(INFe(X/A),M⊗Oτ
cris

Ωτ,i
cris) = 0

for all i > 0 and j ≥ 0.

Proof. By Lemma 4.4.8, the sheaves Ωτ,i
cris are τ -edged quasi-crystals, which implies that M⊗Oτ

cris

Ωτ,i
cris is a τ -edged quasi-crystal. Thanks to Proposition 6.1.7 we can then compute its cohomology

using the complex Me{∗} ⊗Dτ
e {∗} Ωτ,i

e {∗}, which is acyclic by Lemma 6.1.5. □

Lemma 6.1.9 (Bhatt–de Jong). Let A be an abelian category and let

K•{0} //// K•{1} // //// · · ·

be a cosimplicial cochain complex of A such that for every b ≥ 0 the complex K•(b) is concentrated
in non-negative degrees. For 0 ≤ i ≤ b write αi,b : K•{0} → K•(b) for the morphism of complexes
induced by the morphism [0] → [0, . . . , b] which sends 0 to i. Suppose that the following conditions
are satisfied.

(1) For every 0 ≤ i ≤ b, the morphism αi,b is a quasi-isomorphism .
(2) For every a > 0, the cochain complex associated to Ka{∗} is acyclic.

If K•,∗ is the double complex associated to K•{∗}, then both K0,∗ and K•,0 are quasi-isomorphic to
Tot(K•,∗).

https://stacks.math.columbia.edu/tag/07L9
https://stacks.math.columbia.edu/tag/07KQ
https://stacks.math.columbia.edu/tag/07KQ
https://stacks.math.columbia.edu/tag/07JN


24 MARCO D’ADDEZIO

Proof. We first note that for every 0 ≤ i ≤ b and j ≥ 0, the isomorphisms

αi,b : Hj(K•{0}) ∼−→ Hj(K•{b})
have as common inverse the morphism

Hj(K•{b})→ Hj(K•{0})
induced by [0, . . . , b]→ [0]. In particular, they are independent of i. When taking the first spectral
sequence associated to the double complex K•,∗, the differentials of the first page are

Hj(K0,∗)
0−→ Hj(K1,∗)

∼−→ Hj(K2,∗)
0−→ Hj(K3,∗)→ . . .

This implies that K0,∗ is quasi-isomorphic to Tot(K•,∗). Looking at the second spectral sequence,
Condition (2) implies that K•,0 is also quasi-isomorphic to Tot(K•,∗). □

Theorem 6.1.10. Let M be a τ -edged crystal over INF(X/A). There exists a compatible system
of quasi-isomorphisms of filtered complexes

RΓ(INFe(X/A),M)
∼−→Me⊗Dτ

e
Ωτ,•
e

indexed by e ≥ 1.

Proof. We want to apply Lemma 6.1.9. We consider the double complex K•,∗ of filtered modules
defined by

Ka,b := Me ⊗Dτ
e

Ωτ,a
e {b}.

By Lemma 6.1.5, the columns Ka,∗ are acyclic when a > 0 and K0,∗ is quasi-isomorphic to
RΓ(INFe(X/A),M) thanks to Proposition 6.1.7. By Lemma 4.3.8, we deduce that for every
0 ≤ i ≤ b the morphism

αi,b : Me ⊗Dτ
e

Ωτ,•
e {0} →Me ⊗Dτ

e
Ωτ,•
e {b}

is a quasi-isomorphism. □

6.2. Comparison with rigid cohomology.

6.2.1. We write (An,Fil) for the projective limit

lim←−
e

Oλn
inf(Z/p

e[t], (Fp[t], t)).

By definition, Fil0(An) is the projective limit

lim←−
e

Z[t, p
tn ]/( p

tn )e ⊆ lim←−
e

Z/pe[t, t−1] = Zp⟨t, t−1⟩.

We denote by Zp⟨t, t−1⟩− the Zp-submodule of Zp⟨t, t−1⟩ of series of the form
∑∞

i=1 ait
−i with

ai ∈ Zp and by Fil0(An)− the intersection Fil0(An) ∩ Zp⟨t, t−1⟩−.

Lemma 6.2.2. Every element of Fil0(An)− can be written uniquely in the form
∞∑
i=1

bi(t)
( p
tn

)i
where each bi(t) ∈ Zp[t] is a polynomial of degree at most n− 1.

Proof. This follows from the analogous result modulo ( p
tn )e for every e. □
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Write Bn,Qp for the (unfiltered) Qp-algebra Fil0(An)[1p ] = An[1p ] and Cn,Qp for the subalgebra of

Zp⟨t, t−1⟩[1p ] of series
∑∞

j=−∞ ajt
j such that vp(aj) ≥ ⌈− j

n⌉ for j small enough.

Lemma 6.2.3. The algebra Cn,Qp coincides with the subset of f ∈ Zp⟨t, t−1⟩[1p ] which can be written

as a sum f = f+ + f− with f+ ∈ Zp⟨t⟩[1p ] and f− ∈ Fil0(An)−[1p ]. In particular, Bn,Qp = Cn,Qp.

Proof. It is enough to prove the result for those f =
∑∞

j=−∞ ajt
j ∈ Cn,Qp with aj = 0 for j ≥ 0.

Write ek for ⌈ kn⌉ and suppose that vp(a−k) ≥ ek for m≫ 0 and k > mn, then

f =
mn∑
k=1

a−kt
−k +

∞∑
k=mn+1

peka′−kt
−k

where a′−k = ak
pek ∈ Zp. Since

∞∑
k=mn+1

peka′−kt
−k =

∞∑
i=m+1

in∑
k=(i−1)n+1

pia′−kt
in−kt−in =

∞∑
i=m+1

bi(t)
( p
tn

)i
with

bi(t) :=
in∑

k=(i−1)n+1

a′−kt
in−k ∈ Zp[t]

of degree at most n− 1, we conclude by Lemma 6.2.2. □

Corollary 6.2.4. There exists a natural isomorphism

lim−→
n

Bn,Qp

∼−→ Qp⟨t⟩†t ,

where Qp⟨t⟩†t ⊆ Qp⟨t, t−1⟩ is the subring of series which are overconvergent at 0.

7. A stacky approach

7.1. The convergent stack. We reinterpret the convergent site construction by associating to
schemes over Fp a convergent stack.

Definition 7.1.1. Let Aff∧
Qp

denote the category of complete affinoid rings (R,R+) over (Qp,Zp),
that we call p-adic affinoid rings. For a scheme X over Fp and m ∈ Z≥0, we define the functor

X(m)
conv : Aff∧

Qp
→ Set, (R,R+) 7→ X(R+/Nm(R+)).

The convergent stack is the functor

Xconv := lim−→
m

X(m)
conv.

Let us compute this functor for semi-perfect schemes.

Construction 7.1.2. Let C be a semi-perfect ring and write J for ker(W (C♭) → C♭ → C). For
every m ∈ Z≥0, we define

Ã(m)
conv(C) := BlJ(m)

(
W (C♭)

)
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endowed with the standard Z≥0-grading. The p-completed graded localisation of Ã
(m)
conv(C) with

respect to p⟨1⟩ is the p-adic algebra

A(m)
conv(C) := W (C♭)[J

(m)

p ]∧.

We also consider the ramified variant

Ã(m,n)
conv (C) := Bl

1/pn

J(m,n)

(
W (C♭)[p1/p

n
]
)
,

where Bl
1/pn

− (−) is the 1
pnZ≥0-graded blow up algebra and J (m,n) := (p1/p

n
, J (m−n)). There are

natural morphisms

Ã(m,0)
conv (C)→ Ã(m,1)

conv (C)→ Ã(m,2)
conv (C)→ . . . .

We denote by B̃
(m)
conv(C), B

(m)
conv(C), . . . the extensions to Qp. Let X̃

(m,n)
conv be the generic fibre of the

p-adic completion of

Proj(B̃(m,n)
conv (C), Ã(m,n)

conv (C)).

We get a tower

(7.1) · · · → X̃(m,2)
conv → X̃(m,1)

conv → X̃(m,0)
conv .

Lemma 7.1.3. The projective limit X̃
(m,∞)
conv of (7.1) is a perfectoid space.

Lemma 7.1.4. For a semi-perfect ring, the adic space Spa(B
(m)
conv(C), A

(m)
conv(C)) is preperfectoid,

hence sheafy.

Proof. Set A := A
(m)
conv(C) and B := B

(m)
conv(C). Consider the perfectoid affinoid ring (R,R+) ∈ Aff∧

Qp

obtained as the p-adic completion of (Qp[p
1/p∞ ],Zp[p

1/p∞ ]). Form the tensor product in Aff∧
Qp

(B′, A′) := (B,A)⊗(Qp,Zp)(R,R
+).

We have that Spa(B′, A′) is an affinoid open of X̃
(m,∞)
conv , hence perfectoid by Lemma 7.1.3. □

Lemma 7.1.5. For a semi-perfect ring C, the adic space Spa(B
(m)
conv(C), A

(m)
conv(C)) represents the

functor (Spec(C))
(m)
conv.

Proof. For (R,R+) ∈ Aff∧
Qp

, a morphism

(B(m)
conv(C), A(m)

conv(C))→ (R,R+)

corresponds to a continuous homomorphism f : W (C♭)→ R+ such that f(J) ⊆ Nm(R+). Hence it
is equivalent to the datum of a morphism C → R+/Nm(R+), as we wanted. □

Proposition 7.1.6. The assignment X 7→ Xconv defines a functor

{Semi-perfect schemes/Fp} → {Preperfectoid spaces/Qp}.

Proof. For semi-perfect affines this follows from Lemma 7.1.4 and Lemma 7.1.5. □
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7.2. The marked convergent stack.

Definition 7.2.1. A marked p-adic affinoid ring (R,R+) is a p-adic affinoid ring (R,R+) endowed
with a marking on R+/N∞(R+). We denote by Aff∧

Qp
the category of p-adic marked affinoid rings.

For a marked scheme X over Fp and m ∈ Z≥0, we define the functor

X(m)
conv : Aff∧

Qp
→ Set, (R,R+) 7→ X(R+

m̄)

and we take

Xconv := lim−→
m

X(m)
conv.

We say that Xconv is the marked convergent stack of X.

Definition 7.2.2. A meromorphic coherent module over Xconv is the datum of a coherent module
M(A,A+) ∈ Coh(Amer) for every morphism Spa(A,A+) → Xconv with (A,A+) ∈ Aff∧

Qp
, together

with the datum of isomorphisms

M(A,A+) ⊗Amer Bmer ∼−→M(B,B+)

for every commutative triangle

Spa(B,B+) Spa(A,A+)

Xconv.

We write Cohmer(Xconv) for the category they form.

Similarly, a τ∞-edged coherent module is the datum of a coherent module M(A,A+) ∈ Coh(Aτ∞) for

every morphism Spa(A,A+) → Xconv, additionally endowed with analogous compatibility isomor-
phisms. We write Cohτ∞(Xconv) for the category of τ∞-edged coherent modules.
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formula for isocrystals, J. Algebraic Geom. 32 (2023), 93–141.

[DS91] B. Dwork and S. Sperber, Logarithmic decay and overconvergence of the unit root and associated zeta
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