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In the memory of Pierre Berthelot

ABSTRACT. We develop a unified foundation for crystalline, convergent, and rigid cohomology
through a new family of ringed sites, the T-edged crystalline sites and T-edged convergent sites. They
are parametrised by certain functions 7 called edge-types. For linear edge-types, these yield inte-
gral versions of rigid cohomology and overconvergent F-isocrystals. For exponential edge-types, the
sites realise the conjectured log-decay crystalline cohomology theories, with associated F-isocrystals
matching Kramer-Miller’s coordinate-defined F-isocrystals. Our approach goes beyond the usual
finite-type setting and it is robust enough to support a stacky approach. To analyse rational func-
tions with bounded poles we introduce the notion of marked schemes. This formalism offers a
convenient framework for studying pole behavior beyond the traditional confines of log geometry.
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1. INTRODUCTION

In the recent development of p-adic Hodge theory, driven by new techniques such as perfectoid
geometry, prismatic cohomology, and Cartier—Witt stacks, convergent and rigid cohomology have
remained somehow peripheral to the main advances. This article aims to take a first step towards
including Berthelot’s theory within the contemporary landscape of p-adic cohomology theories.

1.1. Crystalline and rigid cohomology. In characteristic p, the two main p-adic cohomology the-
ories are rigid cohomology and crystalline cohomology. Rigid cohomology, constructed by Berthelot,
possesses desirable properties such as Poincaré duality, the Lefschetz trace formula, and a theory of
weights as for f-adic étale cohomology. However, establishing finiteness results for its cohomology
groups remains challenging. Notably, the coherence of the higher direct image of overconvergent
F-isocrystals under smooth and proper morphisms, known as Berthelot’s conjecture, remains an
open problem [Laz16].

On the other hand, crystalline cohomology, pioneered by Grothendieck and chiefly developed by
Berthelot and Ogus, is not well behaved for non-proper or singular varieties. Nonetheless, the finite-
ness statements in the smooth and proper setting are simplified by the comparison with algebraic de
Rham cohomology. The crystalline analogue of Berthelot’s conjecture has been solved [Morl9, Ap-
pendix|, [DTZ23], where the finiteness is established through the coherence of higher direct images
of coherent sheaves under proper morphisms. Another significant strength of crystalline cohomology
lies in its broader applicability: it is naturally defined for non-Noetherian schemes and it can be
used in perfect geometry. This often enables reductions to quasiregular semi-perfect schemes, where
crystalline cohomology is governed by Fontaine’s ring A.is. The flexibility of crystalline cohomology
allows a stacky approach a la Simpson, as developed by Bhatt—Lurie and Drinfeld.

Given the strengths and weaknesses of rigid and crystalline cohomology, the motivation behind
edged crystalline cohomology is to amalgamate the desirable aspects of both. Another work along
these lines is developed in [Lan23].

1.2. Marked algebraic geometry. To define edged crystalline cohomology, we introduce the
notion of marked schemes, a generalization of modulus pairs defined in [KMSY21]. The theory
of marked schemes provides a natural framework for studying regular functions of schemes with
poles bounded at the designated marking. With this notion, we are able to construct the marked
infinitesimal site of a marked scheme X over a divided power ring (A, A/I,v). This consists of
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infinitesimal extensions B — B/J with B/J further endowed with a marking. On this site we
construct for every edge-type 7 a filtered sheaf of A-algebras O7 ;.. This is obtained by taking
divided power envelopes, keeping the poles bounded at the marking as dictated by 7.

1.3. Log-decay crystalline cohomology. Wan proved in [Wan96] that the L-function of log-
decay F-isocrystals with parameter r € R< (i.e., the growth of p-adic valuations of the coefficients
is %logp) over A%ps is p-adic meromorphic in the open disk of radius p*/”. On the other hand,
Emerton and Kisin proved in [EKO01] that the L-function of unit-root F-isocrystals (corresponding
to the limit case r — o00) is p-adic meromorphic on the closed disk of radius 1. They employed
Katz’s cohomological formula, formulated with étale cohomology. Wan expected a variant of Katz’s
cohomological formula, adapted to the log-decay context, that would explain his result. In particu-
lar, he expected a log-decay crystalline cohomology theory with a suitable Lefschetz trace formula.
Our 0"-edged crystalline cohomology provides a promising candidate for such a theory and could
be used to reinterpret and extend his result.

Acknowledgments. It is a pleasure to thank Bruno Chiarellotto, Hélene Esnault, Luc Illusie,
Kiran Kedlaya, Shane Kelly, Christopher Lazda, Hiroyasu Miyazaki, Matthew Morrow, Mauro
Porta, Kay Riilling, Peter Scholze, and Daqging Wan for all the enlightening discussions on the topic
that greatly influenced this article.

The author was funded by the Max-Planck Institute for Mathematics, the Deutsche Forschungsge-
meinschaft (project ID: 461915680), and the Marie Sktodowska-Curie Actions (project ID: 101068237).
He was also hosted by the Institut de Mathématiques de Jussieu-Paris Rive Gauche and the Institut
de Recherche Mathématique Avancée in Strasbourg.

2. MARKED ALGEBRAIC GEOMETRY

The primary goal of this section is to construct the category of marked schemes, which generalises
the category of modulus pairs introduced in [KMSY21].

2.1. Marked rings.

Definition 2.1.1. A simply marked ring is a pair (A,I;ll) with A a ring’ and I4 € A an ideal
which is invertible? as an A-module. A morphism of simply marked rings (4,1;") — (B,I5") is a
morphism of rings A — B such that Iz C I4B. We denote by %Sim the (big) category of simply
marked rings. If T4 = (f) we also write (A, f~!) for the simply marked ring (4, Igl).

Example 2.1.2. If (A, f7!) and (B,g~!) are simply marked rings with principal ideals, a ring
morphism ¢: A — B defines a morphism of simply marked rings if and only if ¢(f)|g. In this case,
¢ extends naturally to a morphism Ay — B, which sends %A CAfto éB C B,.

Definition 2.1.3. We denote by Ring the category of commutative rings. There is a natural faithful
functor v: Ring®™ — Ring obtained by forgetting the ideal. This functor admits a fully faithful

left adjoint u: Ring — Ring®™, which sends a ring A to the simply marked ring (A, 1). If not said

n this article, by ring we always mean a commutative, unital, and associative ring.
2There is a generalisation of the theory where the ideals are not asked to be invertible. The categories we construct
in this article should be thought as the “Cartier objects” of larger categories of marked rings and marked schemes.
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differently, we use u to compare commutative rings and simply marked rings. We will say that an
object in the essential image of w is a trivially marked ring.

Lemma 2.1.4. The category of simply marked rings does not admit coproducts.

Proof. Suppose that (A,I,') was the coproduct of (Z[z],z~!) and (Z[y],y") in Ring®™. If we
write x4,y4 € A for the images of x and y, we have by definition that the ideal I4 is contained in
(x4) N (ya). By the universal property of (A, Ijl), we get the following commutative diagram of
simply marked rings

| J

(Z[t), t71) —— (Z[t];t7?),

where x — t and y — t. If K is the kernel of p1: A — Z[x,y], by the previous observation we
deduce that

Ia+ K C ((za) + K) N ((ya) + K) = (zaya) + K.
By projecting this containment to Z[t], this implies that ¢o(14) C (p2(zaya)) = (t?), contradicting
the fact that t lies in pa(Z4). O

In order to make geometric operations, we want to enlarge the category to allow all finite colimits.

Definition 2.1.5. Let A be a ring and let {I4¢}scr be a finite set of invertible ideals of A. The
marking of A associated to {I4}eer is the functor hy: Ring®™ — Set which sends R € Ring®™ to
the subset S S

(] Hom((4, I;}), R) € Hom(A, R).

lel
A marked ring is the datum of a ring A and a marking h4 associated to some finite set of invertible
ideals of A. A morphism (A, ha) — (B, hp) of marked rings is a morphism A — B of rings such
that the induced morphism?® hg — hy sends h B(R) to ha(R) for every R € Ring®™. We denote by
Ring the category of marked rings. We will see in Lemma 3.2.4 that a marked ring is determined
by its polar filtration.

Notation 2.1.6. If (A, h4) is a marked ring associated to the set of invertible ideals {I4¢}scr,
we will also denote it by (A, Iglz)ge - Nonetheless, note that h4 does not determine uniquely the

family {4 }ecr, so that (A, [Zlg)feL is only one of many possible presentations of (A, h4).

Lemma 2.1.7. If A = (A, IZIK)%L is a marked ring and for some {1 # lo € L we have T4, C Lay,,
then (A, Iglf)geL = (4, IZ;)KGL\{gz}. In particular, if A is a valuation ring, then A is simply marked.

Proof. This follows from the fact that for every marked ring R € Ring®™, we have
Hom((A4, I} ), R) C Hom((4,1},),R).

3Note that for rings we use the Yoneda embedding of Ring®® rather than Ring.
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Definition 2.1.8. We say that a marked ring A is principal if it can be written in the form
(A, I;ng)geL with each 14, principal. If {fi}scr are generators of {Ia¢}scr, we will also write
(A, f[l)geL rather than (A, I;lé)ge,;. If A= (A, f[l)geL is a principal marked ring, we say that an
element f € A is a slicing element of A if

VI = T[]

lel

Construction 2.1.9. Given a ring ~A and a locally principal ideal I there is a minimal quotient
A — Asuch that I'A is invertible in A. This corresponds to the ring of global sections of the blowup
of Spec(A) at V(I). If I = (f), then A = A/K where

K= JO: (/)

i>1

Definition 2.1.10. Let (A, ha) be a marked ring. A marked envelope of a ring homomorphism
A — B is a marked ring (D, hp) endowed with a morphism (A, hs) — (D, hp) such that for every
marked ring homomorphism (A4, ha) — (C, h¢) such that A — C factors through B, there exists a
factorisation

(A ha) = (D,hp) — (C, he).

Lemma 2.1.11. For a marked ring (A,ha) and a ring homomorphism A — B, there ezists a
unique marked envelope.

Proof. If (A, ha) = (A, I })ecr, then (D, hp) = (B, (IneB) ™ )ser- O

Lemma 2.1.12. The category Ring has finite colimits and finite products and their formation
commutes with the forgetful functor v: Ring — Ring. The initial object is (Z,1) and the final object
is (0,0).

Proof. Tf (A, I;') is a simply marked (C,1)-algebra and (B,1) is a trivially marked C-algebra,
then the fibre coproduct (A, I;") ®(c,1) (B, 1) is the marked envelope of A — A ®c B, denoted by
(D, 151). Indeed, for every simply marked ring R and every pair
(¢1,2) € Hom(A, R) Xpom(c,r) Hom(B, R)
we have
(1 @ 2)(Ia ® B)R = ¢1(1a)R.

Therefore, we get
Hom((D, Ip'), R) = Hom((4, I}"), B) Xtom(c,r) Hom(B, R).

From this we deduce that if (4, I, })ser, and (B, I3} )menr are marked rings over Spec(C, IEL)”EN’
the fibre coproduct is the marked ring

(Dv (IA,KD)ilﬂ (IB,mD)il)ZGL,mEM

with D the minimal quotient of A ®c B which makes all the ideals invertible. Moreover, if we
have a double arrow f,g: (A, Iglf)geL — (B,Iglm)meM and C is the coequaliser at the level of
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rings, then the coequaliser as marked rings is the marked envelope of B — (. The product
(A, I;l,lf)fEL X (B,Igﬁlm)meM is the marked ring

(Ax B, I}, x B,AxIg!).
O

Remark 2.1.13. There is also a nice oco-category of animated marked rings. One first starts with
the oo-category C = AnRing®™ of animated simply marked rings. The objects of the homotopy
category hC are defined to be surjections (at the level of m() of animated rings (A — Ag) and the
morphisms (A — Ag) — (B — By) are homotopy classes of morphisms of animated rings A — B
such that B — B ®ﬁ Ay factors through By (up to homotopy). This category is endowed with a
natural functor v : hC — hAnRing which sends (A — Ap) to A. Then C is defined as the fibre
product AnRing XpanRing hC as co-categories.

2.2. Marked schemes.

Definition 2.2.1. A premarked scheme is a pair X = (X, hy), where X is a scheme and

hx: Ring®™ — Set

is a subfunctor of the composition hx o v, with v: Ring®™™ — Ring the forgetful functor. We say
that X is the underlying scheme of X. A morphism of premarked schemes X — Y is a morphism
of schemes X — Y such that hx — hy sends hx(R) to hy(R) for every R € Ring®™. We denote

by Sch™ the (big) category of premarked schemes.

Definition 2.2.2. The category of premarked schemes is naturally fibred over Sch via the faithful
functor v: Sch™ — Sch which sends (X, hx) — X. If (X, hx) is a premarked scheme and 7" — X
is a morphism of schemes, we write hr for hx X, hr and we say that a morphism of premarked
schemes is minimal if it is of the form (T, hy) — (X, hx).

Definition 2.2.3. There is a canonical fully faithful functor Ring®® — Sch™ which sends A =
(A, ha) to Spec(A) = (Spec(A),ha). We say that a premarked scheme isomorphic to Spec(A) for
some marked ring A is an affine marked scheme. A marked scheme is a premarked scheme (X, hx)
such that for some Zariski covering {U; — X };es all the restrictions (U;, hy,) are affine marked
schemes. We denote by Sch C Sch™ the full (big) subcategory of marked schemes.

A pair (X, I;(l) where X is a scheme and Zx is an invertible quasi-coherent sheaf of ideals of X
defines a marked scheme. We say that a marked scheme of this form is a simply marked scheme.
A principal marked affine scheme is the spectrum of a principal marked ring. We have a functor
u: Sch — Sch sending X to (X, Ox).

Remark 2.2.4. The notion of modulus pair in [KM21] coincides with the one of a simply marked
scheme.

Lemma 2.2.5. The composition hx o u is represented by an open affine immersion j : X* — X.

Proof. This can be checked Zariski locally on X. When X = Spec(A4, Iglg)ge[,, we have that
X* = Spec(A)\ | JV(Iae).

LeL
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0

Definition 2.2.6. For a marked ring A we denote by A* the ring I'((Spec(4))*, O). Concretely,
when A = (A, f~1), we have A* = Ay.

Lemma 2.2.7. The category Sch has finite limits and arbitrary coproducts. The final object is
Spec(Z,1) and the initial object is () :== Spec(0,0).

Proof. This follows from Lemma 2.1.12. O
2.3. Generalities on marked schemes.

Lemma 2.3.1. Let (A, ha) be a marked ring and let (B, Il;l) be a simply marked ring. A morphism
A — B of rings induces a morphism of marked rings if and only if for every mazimal ideal m C B,
the induced morphisms (A, ha) — (Bm,IEi) are morphisms of marked rings. In particular, hy is

m

determined by the value on the marked rings R € Ring®™ with R a local ring.

Proof. 1t is enough to prove that for every ideal J C B and b € B we have that b € J if and only
if % € JBy for every maximal ideal m C B. By replacing B with B/J, we may assume J = (0).
Then the result is well-known. O

Construction 2.3.2. When (A4, 221) be a principal marked ring with ¥4 = {f1,..., fn}, we write
Alf, ..., 7] or A[g;] for the subring of A‘[z] generated by 4. We have a canonical map

(4,531 = (Al )27,

Lemma 2.3.3. Let (A, IZI) be a simply marked ring and (B, g7, ..., g7") a principal marked ring.
A ring homomorphism ¢: A — B induces a morphism of marked rings if and only if there exist
a; € Iy and bjj € B for 1 <i <m and 1 < j <n such that in B* we have

Z plai)bij _ 1
9
7/7‘7

Proof. Let us first show that the condition is necessary. By definition, the induced morphism

-1 -1
(A,IA)%(B[g%,,g%],ﬂf )
is a morphism of marked rings if and only if there exist aq,...,a,, € [4 and elements P, ..., Py, €
B[gll, e gin] such that

Z w(a;)P; = .
i=1

Looking at the degree 1 part of this equation, we infer that there exist b;; € B such that

m n
Y owlai) Y byg =
i=1 j=1

We deduce the desired condition. On the other hand, assuming that the condition is satisfied, we
have to show that for every morphism

Vi (Bygrt.. g0t) = (CohTY)
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of marked rings, the composition 1 o ¢ defines a morphism of marked rings. By assumption, for
every 1 < j < n there exists ¢; € C such that ¢(g;)c; = h. This implies that

> (i) (bij)e; = Zw( wm) W(gi)e; = h,
&3

showing that h € I4C as we wanted.
O

Corollary 2.3.4. For every principal marked ring (A, 221) we have the following canonical iso-
morphism
-1 -1
(A, X)) = (A[ﬁ],x ) XA A.

Definition 2.3.5. We denote by M the marked scheme Spec(Z[t],t~1). For a marked ring A, there
is a natural inclusion of sets M[(A4) < A obtained by taking the image of ¢ in A.

Lemma 2.3.6. For a marked ring A and an element f € M(A) C A, there exists a unique g € A*
such that fg =1 in A*. In other words,

M(A) C AN (A%,

Proof. A morphism of marked rings ¢ : (Z[t],t~!) — A which sends ¢t ++ f induces a morphism
@: Z[t], — A'. We can then take g := 3(1). O

Lemma 2.3.7. If A= (A, f{',..., f;1), then M(A) is the set of g € AN (A)* such that

Z 7=
for some a; € A.

Proof. This follows from Lemma 2.3.3. O

For our purposes, it will be enough to endow the category of marked schemes with a naive Zariski
topology. In [D’A25], we also study finer topologies, such as the v-Zariski topology and the v-étale
topology.

Definition 2.3.8. We say that a minimal morphism Y — X is an open (resp. closed) immersion
if Y — X is an open (resp. closed) immersion.

Definition 2.3.9. A Zariski covering of X is a family {U; — X}ier of open immersions such
that {U; — X}ier is a Zariski covering. We endow Sch with the topology induced by the Zariski
coverings. We call it the Zariski topology.

Construction 2.3.10. The structural sheaf O is clearly a Zariski sheaf. More in general, every
representable presheaf of Sch is a Zariski sheaf by Lemma 2.3.1. Another example is the sheaf
O'X) =T(X"0).

3. FILTRATIONS

This section serves as an interlude on filtrations. We reinterpret the notion of marked rings and
marked schemes as filtered objects.
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3.1. Filtered objects.

Definition 3.1.1 (Filtered object). Let A be an abelian category satisfying condition (AB5). A
(descending exhaustive) filtration Fil of an object A € A is the datum of a set {FilZ(A)} of

subobjects of A such that Fil’(A) C Fil/(A) for i > j and
lig Fil(4) = A.

1€Z

We use the convention that Fil™>°(A) = A. A filtration is positive if Fil'(A) = A for i < 0 and
negative if Fil'(A) = 0 for i > 0. Given a filtration Fil of an object A and j € Z, we write Fil(j) for
the filtration defined by

Fil(j)/(A) := Fil"*7 (A).
A filtered object is an object of A endowed with a filtration. We denote by Fil(A) the additive

category of filtered objects of A. There is a natural embedding A < Fil(.A) obtained by endowing
A € A with the trivial filtration Fily, defined by

n oy JO <0
(A= 4 i >0,
For j € Z we denote by A(j) the filtered object (A, Filyiv(5)).

Definition 3.1.2. Recall that an additive category C is quasi-abelian if the following conditions
are satisfied.

(1) C admits kernels and cokernels.
(2) The pushout of a strict epimorphism along arbitrary morphisms is strict.
(3) The pullback of a strict monomorphism along arbitrary morphisms is strict.

Theorem 3.1.3 ([SS13, Thm 3.9]). The category Fil(A) is quasi-abelian.

Write AZ for the category Fun((Z,>)°P, A) where (Z,>) is Z endowed with the standard poset
structure. Schapira and Schneiders prove that the natural functor

v: Fil(A) — A%
admits a left adjoint & which sends {A4;};ez € A% to A = lim, A; endowed with the filtration
Fil'(A) == im(A4; — A).

In addition, they prove that ¢ is fully faithful and strictly exact and Fil(.A), via this embedding, is
closed under the operation of taking subobjects. In particular, one can check whether a sequence
Fil(A) is strict by passing to A”.

Definition 3.1.4. If A is further endowed with an additive monoidal structure ® which commutes
with filtered colimits, then Fil(.A) is endowed with a natural additive monoidal structure

(A, Fil) (B, Fil) := (A ® B, Fil),
with Fil"(A ® B) generated by the images of Fil'(A) @ Fil/(B) for i + j = n.
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Definition 3.1.5 (Filtered algebra). If R is a ring and Mod(R) is the abelian symmetric monoidal
category of R-modules, we say that a commutative monoid object of Fil(Mod(R)) is a filtered R-
algebra. We denote by FilAlg(R) the category they form. A filtered ring is a commutative filtered
Z-algebra and we write FilRing for FilAlg(Z). Concretely, a filtered ring is a ring A endowed with a
descending multiplicative filtration Fil such that 1 € Fil°(A). A module over a filtered ring (A, Fil)
is a module object over (A, Fil) in Fil(Ab).

Lemma 3.1.6. The forgetful functor FilAlg(R) — Fil(Mod(R)) admits a left adjoint
(M, Fil) ~ Sym g (M, Fil).

Proof. The underlying algebra of Symp (M, Fil) is the symmetric tensor algebra
Symp(M) = @ Sym (M).
1=0

The filtration is the one induced by Fil on M®". O

Definition 3.1.7. We say that Symp (M, Fil) is the filtered symmetric tensor algebra associated to
(M, Fil).

Lemma 3.1.8. If (A,Fil) is a filtered R-module and A has in addition an R-algebra structure,
then there exists a minimal filtration Filye on A coarser than Fil such that (A, Filyat) is a filtered
R-algebra.

Proof. There is a natural quotient map Symp(A) — A of R-algebras. The filtration of Symp (A, Fil)
induces then a filtration Fil,,;; on A that satisfies the desired property. O

Definition 3.1.9. For a filtered sheaf of abelian groups (F, Fil) over a site C, we define RI'(C, (F, Fil))
as the object

i — RT(C,Fil'(F))
in D(Ab?).

Lemma 3.1.10. For a filtered ring (A,Fil) and a filtered (A, Fil)-module (M, Fil), there exists a
strict exact sequence

P (A, Fil) — (A, Fil) — (M,Fil) — 0

icl =
for some sets I, J.

3.2. Polar filtration of marked schemes. We want to construct a canonical negative filtration
on marked rings.

Definition 3.2.1. For a principal marked ring A the associated polar filtration Fil,, is the smallest

negative filtration on A* such that Filgol(A‘) = A and for every f € M(A), we have f~! € Fil;oll(A‘).

Lemma 3.2.2. For a principal marked ring (A, ffl, ooy 7Y and a multiplicative subset S C A,
we have ' '

STH(Fil (A")) = Fil ((S7'4)")
for every i, where STYA is endowed with the marking induced by fl_l, N
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Proof. This follows from Lemma 2.3.7. O

Definition 3.2.3. By gluing the filtration Fil,, on principal marked rings using Lemma 3.2.2, we
get a negative filtration Filp, for every marked ring called the polar filtration.

Lemma 3.2.4. The functor
Ring < FilRing
which sends A to (A, Filye) is fully faithful.

Proof. By going Zariski locally it is enough to prove that for every principal simply marked ring
(A, f~1) and every principal marked ring (B,gl_l, ooy g, a morphism ¢: A — B upgrades to a
morphism of marked rings if and only if it induces a morphism Fil | Oll(AL) — Fil | Oll(BL). By Lemma
2.3.3, we already know that ¢ defines a morphism of marked rings if and only if there exist b; € B
such that

m
‘P(f.)bi = 1.
9i
=1

Dividing by ¢(f) this is precisely the condition
(%) € Fil,

(B'),
as we wanted. O

Remark 3.2.5. Lemma 3.2.4 can be used to redefine marked rings as the essential image of the
functor.

Definition 3.2.6. A filtered scheme is a scheme X endowed with a sheaf of commutative filtered
Ox-algebras (0%, Fil), such that the unit Ox — O% induces an isomorphism Ox — Filo((’)g().
We write X* — X for the affine morphism induced by Ox — O%. We write FSch for the category
they form.

Lemma 3.2.7. There exists a natural fully faithful functor
Sch — FilSch.

3.3. Filtered differential graded algebras.

Definition 3.3.1 (Filtered differential graded algebra). For a ring R, we write DGMp for the
abelian category of differential graded R-modules, namely the category of Zx>(-graded modules with
an R-linear endomorphism of degree 1. It is endowed with the usual symmetric monoidal structure
such that the braiding M ®r N = N ®r M for homogeneous modules M, N is given by

m@n— (—1)38mdes)y, ¢

A commutative monoid object in DGMp, is a differential graded algebra over R. A filtered differential
graded R-algebra is instead a commutative monoid object in Fil(DGMp). We write FDGAFR, for the
category they form.

Definition 3.3.2 (Hodge differential graded algebras). A Hodge differential graded algebra over R
is a filtered differential graded algebra such that

(3.1) d(Fil'(A")) C Fil“tH (A,
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for i > 0. We call (3.1) the Hodge condition. We write HDGA R, for the category of Hodge differential
graded algebras over R.

Remark 3.3.3. If A is an R-algebra, then the de Rham complex Q% /R endowed with the Hodge
filtration is the most basic example of a Hodge differential graded algebra over R.

Lemma 3.3.4. The natural inclusion
HDGAR — FDGAR

admits a left adjoint
Hdg: FDGAR — HDGAR.

Construction 3.3.5 (Hodge filtration). Let (A, Fil) be a filtered ring over a base ring R. The
naiwe filtration Filyaive on 9114 /R is the filtration induced by the one of A by considering the tensor

product (A, Fil) ® 4.0 9}4 / (0). This filtration extends to a filtration Filpaive on the differential
graded algebra Q5 IR Nonetheless, (€25 IR Filpaive) in general fails to satisfy the Hodge condition.
The filtration that we consider is instead

(QZ/R’ FllHdg) = Hdg( :4/R’ Fﬂnajve).
We say that Filyge is the Hodge filtration of the de Rham complex of a filtered ring. We will also
denote (Q;‘/R, Filpqg) by Q4 Fiy R

4. THE EDGED CRYSTALLINE SITE
4.1. Marked infinitesimal extensions.

Definition 4.1.1. A marked infinitesimal extension (A, A/I) is the datum of a ring quotient A —
A/I with nilpotent kernel endowed with a marking on A/I.

Definition 4.1.2. Let (A, A/I) be a ring quotient and X a marked scheme over A/I. We write
INF (X /A) for the opposite of the category of marked infinitesimal extensions (B, B/.J) over (A, A/I)
endowed with a morphism Spec(B/J) — X over A/I. We denote by (X/A)ins C INF(X/A) the
full subcategory of those (B, B/.J) such that Spec(B/J) — X is an open immersion.

Definition 4.1.3. A family of morphisms {(By, Br/Jx) — (B, B/J)}kex in INF(X/A) is a Zariski
covering if the following conditions are satisfied.

(1) Jy = JBy, for every k.

(2) {Spec(By) — Spec(B)}rek is a Zariski covering.

(3) for every k € K the morphism Spec(By/Ji) — Spec(B/J) is minimal.
The category INF(X /A) endowed with the Zariski topology is the (big) marked infinitesimal site.
Definition 4.1.4. We write Oj,s for the sheaf of A-algebras over INF(X /A) given by (B, B/J) —

B and Ziyy C Oy for the subsheaf (B, B/J) — J. We also write My for (Z[t], (Z[t],t71)) €
INF(X/A).

Remark 4.1.5. The functoriality of the marked infinitesimal topos can be obtained as in [BS22,
Rmk. 4.3]
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4.2. Edged localisation.

Construction 4.2.1. The sheaf O;,r is endowed with the infinitesimal filtration given by
Fil! ¢ (Opy) = T}

inf*

For every infinitesimal extension (B, B/J), the topological spaces of Spec(B) and Spec(B/J)

coincide. Therefore, there exists an open subscheme U C Spec(B) corresponding to the open
Spec(B/J)" C Spec(B/J). Locally on Spec(B), the open U is obtained by inverting finitely many
functions. We deduce that U is affine and we write B* for I'(U, Oyr). We denote by O!, ; the sheaf over
INF(X/A) given by (B, B/J) — B*. We denote by Ohnt C 0% ¢ the image of Ot — O ;. The sheaf
O¢ ¢ is endowed with a natural negative filtration with Fllpol((’)mf) = Ot and Fllpol( ¢ ¢) locally
generated by the inverses of the sections of Mj,s. The filtration is called the polar filtration. The

sheaf O  is also endowed with an infinitesimal positive filtration such that Filf (O} ;) = Z£ O} ;-

Definition 4.2.2. An edge-type is a map of sets 7: Zso — Ny := Z>¢ U {00} such that 7 # 0 and
T(e1 + e2) > 7(e1) + 7(e2)
for every e1,es € Z~q. For an edge-type 7 and a positive integer n, we denote by 7,,: : Z~g — Ny

the n-th scaling of T, defined by 7,,(e) = n7(e), and by 7[n] the n-th shift of T, defined by 7[n|(e) =
T(e+n)—7(n)

Definition 4.2.3. For an edge-type 7 and an object A of an abelian category endowed with a
negative filtration Fil, the 7-dilation of Fil, denoted by 7xFil, is the negative filtration of A defined
by

7% Fil~t = Fil~7(®)
for ¢ > 0.

Definition 4.2.4. We denote by O . = (O, Fil;) the sheaf of filtered rings

inf>
Oi:lf = (OiLnf7 Tx Fpol) ®(’)in (Oinfa Enf)'

We say that O] ; is the T-edged localisation of Op¢. For an infinitesimal extension (B, C) over A,
write Bl . € FilAlg(A) for O (B, C). For e > 0 we also write Z’{ for Fil{ ;(O% ;) C Of; with the
filtration induced by the one of O] ,

Example 4.2.5. Let Fyt] be the marked ring (Fp[t]. ). The edge-type A: Zso — Noo defined by
A(e) = e corresponds to the overconvergent theory (see §6.2). In this case, for every n, N > 0, we
have that

L (Z N [, Fplt) = Z/pN [t,t7Y]

and Filgn = 7/pN ¢, &].

Construction 4.2.6. Let ¢ : Z~g — R be a map of sets. We define 7¢: Z~g — N inductively by

p(u)<e 0<

% (e) = max{ sup {u}, max, {T‘P(e—f)—FT“’(f)}}.

We say that 7% is the edge-type associated to the decay-function .
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Definition 4.2.7. Let ¢, : Z~¢ — R be the decay-function ¢, (u) = M, where r is a positive

real number. We denote by 0" the edge-type 7¥7. This type corresponds to the r-log-decay theory,
[K-M16], [K-M21], [K-M22].
Example 4.2.8. When 7 = 1 we have that 6'(e) = p® and
20 1 N, P P°
Fﬂ@}z —hij/p |:t,tnp,...,tnp€:|

Example 4.2.9. Let X be the affine scheme Spec(C') over A with marking given by f € C nonzero-
divisor. If (B, C) is the marked infinitesimal extension with B = C®Q}, /4 With the split square-zero
C-algebra structure, we have

Construction 4.2.10. For an infinitesimal extension (B, C) over A, an edge-type 7, and i > 0 we
define

OF)a = Qpali) @5 B

where the tensor product is in Fil(Mod(B)). We say that the complex
BT S O0p, SO, —

is the T-edged localisation of the de Rham complex of B over A. Note that

TG 7,1
QB/A - /\ QB/A’

where the wedge product is in FilMod(BT™). The constructions define filtered O ;-modules an; over

(X/A)inf

Lemma 4.2.11. For every (B,B/J) € INF(X/A) and every ideal J C K C B, the morphism
ne(B, B/J) — OL(B/K, B/J)

18 a strict epimorphism of filtered B-modules.

Proof. By definition, it is enough to prove the statement both for (Oing, Fing) and (O ¢, T * Fpor).
The morphism (B, Filiys) — (B/K, Filjyt) is a strict epimorphism by construction. To prove that

(B', 7 x Fyo1) = (B/K)", 7 x Fyo1)

is a strict epimorphism we can do it locally on Spec(B), sot that we can assume B/J principal. We
then deduce the result thanks to the observation that

M (B, B/J) — My (B/K,B/J)
is surjective. [l

Construction 4.2.12. For e > 0 we write INF.(X/A) C INF(X/A) for the full subcategory of
those (B, B/J) with J¢ = 0. There is a natural morphism of sites

te: INF (X /A) — INF(X /A)
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induced by the continuous functor (B, B/J) — (B/J¢ B/J). We denote by O . the filtered sheaf

infe

tex (O ) over INF(X /A) and O} ;. the sheaf 1..(O} ). Note that O] ; = lim Of . since every

inf,e i

(B,B/J) € INF(X/A) is in INF.(X/A) for e big enough.

Lemma 4.2.13. For every e > 0 have the following strict exact sequence of sheaves of filtered
Oins-modules

0—-Z¢ = Oy — Ol . — 0.

inf i inf,e

Proof. The morphism Il‘;’f — O ; is a strict monomorphism from the definition, while O] ; — O] ; .

is a strict epimorphism by Lemma 4.2.11. To prove the strict exactness in the middle it is enough
to prove that the sequence of sheaves

0 — I3 00 — Oig — Of e — 0

inf,e

obtained by forgetting the filtration is exact (in the middle). We can work Zariski locally on Spec(B),
so that we may assume B/J principal. If S is the multiplicative set generated by Mi,¢(B, B/J) the
result follows from the exactness of the sequence of B-modules-

0—JS™'B) - S7'B = s~ YB/J) — 0.

4.3. Filtered divided power structures.

Definition 4.3.1. A divided power ring is a ring A endowed with an ideal I and a divided power
structure v on I. We denote such a datum by (A, A/I,~) and write Ring? for the category they
form.

Definition 4.3.2 (Filtered divided power structure). Let (A, Fil) be a filtered ring. A filtered divided
power structure on (A, Fil) is a divided power structure on Fil'(A) such that ~,(Fil'(4)) C Fil*(A)
for n > 1. We say that a filtered ring endowed with a filtered divided power structure is a filtered

divided power ring. We write FilAIgu(A, Fil, ) for the category of filtered divided power rings over
(A, Fil,~).

Proposition 4.3.3. The forgetful functor
FilAlg* (A, Fil, v) — FilAlg(A, Fil)
admits a left adjoint D.,.

Proof. For a filtered ring homomorphism (A, Fil) — (B, Fil) we have to prove that there exists a
filtered divided power ring (D, Fil,7) such that

Hom(A,Fﬂ,’y) ((Da Fﬂ» 7)a (Cv Fll’ 5)) = Hom(A,Fil) ((B7 Fﬂ)a (Ca Fll))
for (C,Fil, §) € FilAlg* (A, Fil, ). O

Definition 4.3.4 (Filtered divided power envelope). For a filtered ring (B, Fil) over (A, Fil) we say
that D+ (B, Fil) is the filtered divided power envelope of (B,Fil) over (A,Fil,~).
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Construction 4.3.5. For a set L and a filtered ring (A, Fil), we denote by (A{z/}ecr,Fil) the

filtered ring with A{xz;}sc; the polynomial divided power algebra over A freely generated by
{xg}ge 1, endowed with the minimal filtration compatible with the one on A and such that x[z]
Fil'(A{xz}¢cr) for i > 1.

If (A, Fil) is endowed with the structure of a filtered divided power structure ~, it induces a com-

patible filtered divided power structure 0 on A{zs}scr, such that d,(x [m]) [n+m] for all n,m > 0.
The filtered divided power algebra (A{xz,}scr, Fil, §) over (A, Fil, ) is the ﬁltered polynomial divided
power algebra over (A,Fil,~) generated by {x¢}scr.

Construction 4.3.6. If (B, Fil,v) is a filtered divided power ring over A, we have a filtered divided
power de Rham complex QZB Fil,y)/A defined using divided power Kéahler differentials. The filtration

is the minimal one compatible with the one of B and such that d(Fil’(B)) € Fil'.
Lemma 4.3.7 (Filtered Poincaré Lemma). Let (B, Fil) be a filtered ring and let
(Pa Fil, ’Y) = (B{xf}feln Fil, ’7)
be a filtered polynomial divided power algebra over (B, Fil). The complex of filtered (B, Fil)-modules
1 2
B =P = Qpriy s = Lpriyp = -
is homotopy equivalent to zero. In particular, for every filtered (B, Fil)-module M, we have that
M — M ®B P — M ®B Q%P,Fil,’y)/B — M ®B Q%P,Fil,'y)/B — ...
18 strictly exact.

Proof. If L = % we get the complex

o0 o)
(B,Fil) » @ (B, Fil(—i) il 2 S P (B, Fil(—i))zlda
=0 i=1
which is homotopy equivalent to zero. For the general case just use that
trrinyB = I\ Ublanriy,
lel
O
Lemma 4.3.8. Let A be a ring, (B, Fil,~) a divided power ring over A, and (P,Fil,v) the divided

power ring over (B,Fil,~) generated by {x;}¢cr. For a filtered B-module M endowed with a flat
connection

M — M @5 Qg pit)/a:
the map on de Rham complezxes
M @5 priqa = MEp Yppig))a

1S a quasi-isomorphism.
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4.4. Edged crystals. A filtered Oj,s-module F over INF(X /A) induces for every (B, C) € INF(X /A)
a filtered O-module Fp on the Zariski site of Spec(B). We say that F is locally quasi-coherent if
for every (B,C) € INF(X/A) the sheaf Fp is induced by some object in Fil(Mod(B)).

Construction 4.4.1. For a divided power ring (A, A/I,~), a marked scheme X over A/I, we define
(Ocris; Fily) to be the presheaf of filtered rings obtained by applying locally D., to (Oint, Filin). For
an edge-type 7, we also write O7 O .., Fil;) for the presheaf of filtered rings over INF(X /A)

cris — ( cris?

obtained by applying D, to Of ;. We also write Z_5 for Fil$ (0. ) - O € OLs endowed with the

filtration induced by Fll by restrlctlon We say that O, is the T-localisation of Ogs. Similarly,
we also write O’ for the presheaf of negatively filtered rings

Oeris C Fil-1(O4;,) C FilH (0!

cris CI‘IS) —

with @cris at level 0.

Lemma 4.4.2. For every 7, the presheaf O . is a locally quasi-coherent filtered Oins-module.

cris

We have also some variants of 7-edged localisation.

Definition 4.4.3. The hyperedged localisation of Ogis is the sheaf of negatively filtered Ocris-
algebras (O, Filp), where Filp, is the minimal filtration such that Fil)(O% ;) = Ois and Fil,~ HOL)
is locally generated by the inverses of the sections of Mj,¢.

Definition 4.4.4. Let k be a perfect field, W its ring of Witt vectors, and K the fraction field of
W. For a separated scheme X of finite type over k£ and an edge-type 7, the 7o-edged crystalline
cohomology complex of X is the complex

RTcris(X/W) == lim RT(INF(Y/W),073) € D(Ab”)

XCY

where the colimit is over all X C Y with Y proper. Similarly the hyperedged crystalline cohomology
compler of X is the complex

RDpc(X/W) = limg RO(INF(Y/W), Oly) € D(AB?<0)

Xcy

where again the colimit is over all X C Y with Y proper. Note that when 7(1) # 0, there is a

Too
ois — O which induces a morphism of complexes

Rrh—cris (X/W) — RFTOO—CI'iS (X/W)

natural morphism O

in D(Ab%<0)

Definition 4.4.5. A filtered O] ;.-module is a module object over O7 . in Fil(Mod(Ojnf)). A 7-

edged crystal over X, is a locally quasi-coherent sheaf of O ;-modules F over INF(X /A) such that

for every morphism (Bg, By/Js) — (B1, B1/J1) in INF(X/A), the comparison morphism
F(B1,B1/J1) ®or . (B,,B1/71) Oris(B2, B2/ J2) — F(B2, B2/ J2)

cris

is an isomorphism of O7; (B, Ba/J2)-modules. We write C7(X/A) for the category of T-edged
crystals over X. We also say that a locally quasi-coherent filtered O] ;.-module F is a 7-edged quasi-
crystal if for every morphism (B, B2/J2) — (B1, B1/J1) in INF(X/A) with By — B surjective
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and By/J1 — By/Jy minimal, the comparison morphism

‘F(Bh Bl/Jl) ®OZT15(B17B1/J1) Oz:—ris(B% BQ/J2) - ‘F(BQ7 BQ/JQ)

is surjective.

Construction 4.4.6. For a marked infinitesimal extension (B, B/J) and e > 0, we write (B.{1}, B/J)
for the product in INF,(X /A) of two copies of (B/J¢, B/J). We write Q7

inf.e for the presheaf on
INF(X/A) which sends (B, B/J) to

Tt (Be{1}, B/J) /T (Be{1}, B/J).

inf

. . T71
Similarly, we define chis,e as

I (B{1}, B/J) /T (BA{1}, B/ J).

Finally, we write an% for Jim_ Q7L and Q7L for Hm Q;ils o

inf,e cris

Lemma 4.4.7. Let B — C a flat epimorphism of rings, then Lo/p = 0. In particular, for every
ring homomorphism A — B, we have Q}j/A = Q}B/A ®p C.

Proof. The first part is [Stacks, Tag 08R2]|. By the base change triangle of the cotangent complex,
we deduce that

Loja =Lpja ®p C.
After taking g, this implies that QlC/A = Q}S/A ®p C. O

Lemma 4.4.8. The filtered O, -modules Q7! are T-edged quasi-crystals.

Cris
Construction 4.4.9. We look at the analogue of the two universal thickenings of [Stacks, Tag
07KN] in our situation. We fix a marked infinitesimal extension (B, B/J) € INF(X/A). We write
By for the square-free split extension B & les e We get then a marked infinitesimal extension
(B1,B/J) € INF(X/A). We also write By for the B-algebra

1 1 2
BoQp 4 ®Qp/a© Q50
with algebra structure defined by
(f,W1,UJ2,77) : (flaw/hw/%n/) = (ff/)fwi +f'w1,fw/2 +f/w27f77/ +f/T]+W1 /\L{)é +w/1 AWQ)‘
Lemma 4.4.10. There exist natural strict epimorphisms

To(B1,B/J) — Q0

cris cris

@ 97'71

cris
and
@ Q’T,l @ QT,l EB QT,Q

cris cris cris?

To(Ba, B/ J) — Q70

cris cris
where we set
QT,’i - QT,i

cris cris

(B,B/J).
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Proof Since the claim is Zariski local, we may assume that the marking B/J is principal. Define
= O} ;(B) and consider the natural embedding pg: B — B ® les/A sending b — (b,0). Then
one Verlﬁes that

( int(B1, B/J), Filpo1) = (B*, Filpol) ®p(o) B1(0),
and similarly,
(B, Filing) = (B, Filiut) @p(0) (B(0) ® Q. 4(1) ).
It follows that
ne(B1, B/J) = (Ohe(By, B/J), 75 Filya) @5, 0) (Br, Filig) = (B, Fil) @) (B(0) &0 4(1)).
Thus, we obtain the decomposition

Le(Bi, B/J) = (B, Fil,) © Q[(B, B/J).

inf

Taking the filtered divided power envelope of O] (B, B / J) yields a strict epimorphism
O’T

cris

(B1,B/J) - QU & Q)

Cris cris’

where the kernel is generated by the divided powers 7, (w) for all n > 2 and w € Q! BijA"
A similar argument shows that

T¢(B2, B/J) = (B',Fil,) ® Q4 (B, B/J) & Q'

inf inf

(B,B/J) ®Q2(B,B/J),

inf

which implies the corresponding strict epimorphism for Bs. O
4.4.11. We are finally ready to define 7-edged and hyperedged crystalline cohomology

Definition 4.4.12. Let k be a perfect field, W its ring of Witt vectors, and K the fraction field of
W. For a separated scheme X of finite type over k and an edge-type 7, the category of coherent 7-
edged isocrystals over X, denoted by Isoc”™ (X/K), is the 2-colimit of the isogeny category of crystals
in coherent O7 . -modules over INF(Y /W) for different embeddings X C Y with Y proper.

cris
5. THE MARKED CONVERGENT SITE
5.1. Marked enlargements.

Definition 5.1.1. A p-adic ring is a p-complete ring. We write Ringﬁ C Ring for the full subcat-
egory of p-adic rings. A morphism A — B is p-étale if for every e > 0 the quotient A/p® — B/p°
is étale. For a p-adic ring A, we write N,,(A) C Jac(A) for the ideal of elements x € A such that
2" € (p) and we write

A) =) = |J Na(4)
m=0

Equivalently, N,,(A) is the kernel of A — A/p 7, A/p. We denote by Az C A/p the quotient
A/Np,(A) and by As the quotient A/Ny(A). Note that by definition we have Az = A/p and

As = A/ (p) = quo—mll—mxz ).

For an ideal I C A containing p, we write I(™) for the ideal generated by p and the elements z?™
with ¢ € 1.



20 MARCO D’ADDEZIO

Definition 5.1.2. A marked p-adic ring is a p-adic ring A endowed with a marking on A/N(A).
We define M} := Spf(Z,(t),t~1) and we denote by A™ the localisation of A with respect to the
local sections of M;)\. The ring A™" is endowed with a natural polar filtration. Let A be a p-adic
ring and X a marked scheme over A/p. For m € Zx>o, a marked enlargement of level m of X
over A, is the datum of a p-torsionfree marked p-adic ring B € %z endowed with a morphism
Spec(B,;,) — X. We write ENL,,(X /A) for the opposite of the category of marked enlargements of
level m over A.

Definition 5.1.3. A family of morphisms {B) — B}rex in ENL,,(X/A) is an étale covering if
the following conditions are satisfied.

(1) Np(Bg) = Ny (B)By, for every k.

(2) {Spec(By) — Spec(B)}rek is a p-étale covering,.

(3) For every k € K, the morphism Spec((B},)s) — Spec(By,) is minimal.

The category ENL,,(X /A) endowed with the p-étale topology is the (big) marked convergent site.

Definition 5.1.4. Let Ocopy for the sheaf of A-algebras over ENL,, (X /A) defined by B — B and
N C Ocony for the subsheaf B +— N,,(B) for m € Ny.

5.2. Meromorphic functions. Let us construct the sheaf of meromorphic functions.

Construction 5.2.1. As in the infinitesimal case, for every marked enlargement B, the topological
spaces of Spf(B) and Spec(Bj;,) coincide. Therefore, there exists an open affine formal subscheme
i C Spf(B) corresponding to the affine open Spec(By,)" C Spec(B;,). We write B* for I'(U, O)
and we denote by O, the sheaf over ENL,,(X /A) given by B — B*. We define

conv
Omer C O L

conv conv

to be the subsheaf of O.qy-algebras locally generated by the inverses of the sections of Mo,y This
is called the sheaf of meromorphic functions. It is endowed with the polar filtration defined by

Fil2 (02 ) i= im (Ocony — Olony)

pol\~conv conv

-1
and Fllpo1

Example 5.2.2. Let F,[t] be the marked ring (F,[t],t1). We write Z, ()" for O (Z,(t), Fp[t])
endowed with its polar negative filtration. We have

Zy(t)P = STULt)

(02 ) locally generated as a Ogony-module by the inverses of the sections of Mcpy .

where S is the multiplicative set of series congruent to t" for some n > 0. Equivalently, by Weier-
strass preparation theorem, we have

ST Zy(t) = SyaZyp(t),

where Sy, C S is the subset of polynomials. These meromorphic functions form a subalgebra of the
(relatively) overconvergent functions in 0, denoted by Zp<t)z C Zy(t,t71), i.e., functions converging
in the annulus 1 — e < |t|, < 1 for some € > 0. The polar filtration Fil; o] corresponds to taking the
Zy(t)-submodule of Z(t);**" generated by the inverses of the series congruent to t™ modulo p.
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Notation 5.2.3. For a p-adic ring A and n > 0, write Fil;j(A(t%t*l) for the A(t)-submodule of
A(t,t71) generated by the series of the form

~

with b; € A (without convergence assumptions).
Proposition 5.2.4. Let A be a p-adic ring such that A/p contains an infinite field k, then

Fily ! (A(t),t71) = Fil A (A(t)er),

where (=)' denotes the p-adic closure in A(t,t~'). In particular,

U Fllpol mer)c

(AtyPer) and B = )72, B, thought as A(t)-submodules of A(t,t~). By

construction, B is a A(t)-subalgebra of A<t>:[ . We have to prove that for every n > 0 and every

sequence (b;);>o in A, then

Proof. Set B,, == Fll;ol

cl
tn ijﬁ GB

Choose a sequence (¢;)i>0 € A with distinct reductions in & C A/p. For m > 0, solve the Vander-
monde system

m
D aic;

=0

S

= for 0<j5<m,

where a; € A. Note that the Vandermonde matrix (CZ )0<Z j<m 1s invertible because the reduction
modulo p of the determinant lies in k*. If we write

using the geometric expansion

we can write

o m P 1 i o m P
fm:ZZ Czj ) :ﬁzbjﬁ+ Z Zalclyt(ﬁrl)n
7=0 i=0 7=0 j=m+1 i=0

This shows that f,,, have the same reduction as f in (A/p™*1)[t,t~], and this proves the desired
result. O
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6. COMPARISON THEOREMS
6.1. Computing edged crystalline cohomology.

Lemma 6.1.1. If M is a locally quasi-coherent sheaf of Oins-modules over INF(X/A), then for
every (B,C) € INF(X/A) we have

H'((B,C),M) =0
fori>0.

Proof. This can be proven using Serre vanishing as in [Stacks, Tag 07JJ]. O

Corollary 6.1.2. If we denote by C. the category INF.(X /A) endowed with the chaotic topology,
then for every locally quasi-coherent sheaf of Oins-modules M over INF.(X /A), we have

RI(INF.(X/A), M) = RT(Ce, M).
Proof. The identity C. — INF.(X /A) induces a morphism of ringed sites
f: (INFe(K/A)a Oinf) — (Cea Oinf)-

By Lemma 6.1.1, for a quasi-coherent sheaf of Oj,-modules M, the higher direct images R’f,M
vanish for ¢ > 0. The result then follows from the observation that f,M = M. See [Stacks, Tag
07JK] for more details. O

Construction 6.1.3. Let X be an affine marked scheme over A of the form Spec(C) and let e
be a positive integer. Choose a polynomial A-algebra P which admits a surjection P - C. We
define J := ker(P — C) and Q. = P/J¢ for e > 1. We denote by (Qc{*},C) the Cech nerve
of (Qe,C) in INF.(X/A). For every i,n > 0 we write Q¢ (n) for Q7% (Qc(n),C). The A-modules
07%n) = OL.(Qe{*},C) are divided power rings over (A, Fil,v) that we also denote by D] (n).
When n = 0 we often drop the index and we write, for example,
DT -l QL
for the T-edged crystalline de Rham complex of (Qe, C).
Lemma 6.1.4. The marked infinitesimal extension (Q.,C) is a weakly final object of INF.(X /A).

Proof. Let (B,C’) be another object in INF.(X/A). We choose a morphism P — B lifting the
composition P — C — C'. If K is the kernel of B — C’, by assumption K¢ = 0, thus P — B
factors through Q. — B. By construction, we get a commutative diagram,

Q. —— B
cC —— ',
as we wanted. O

Lemma 6.1.5. For every cosimplicial filtered module M {x} over DI{x}, the cosimplicial filtered
module

Me{0} ®pyoy Q*{0} = Me{1} @py1y Q0H{1} — ...
18 homotopic to zero for every i > 1.


https://stacks.math.columbia.edu/tag/07JJ
https://stacks.math.columbia.edu/tag/07JK
https://stacks.math.columbia.edu/tag/07JK
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Proof. Since
Q71 (1) = Qiis(Qe(n), C)(1) @p, () DI ()
we deduce that Q7' {*} is obtained from QL. (Q.{*},C)(1) by base change with respect to the

cris
morphism of cosimplicial filtered rings D.{*} — DI {x}. Thanks to [Stacks, Tag 07L9] the complex
QL. (Qe{*},C) is homotopic to zero as a D.{*}-module. The result then follows from [Stacks, Tag

07KQ). O

Construction 6.1.6. Let M be a sheaf of filtered O] -modules over INF(X/A). We denote by
M{*} the cosimplical module M(Q.{*},C). We also write M, for M.{0}. If M is a T-edged
crystal the two projections pr; : (Qe{1},C) — (Qe¢,C) with ¢ = 1,2 induce isomorphisms

pri(Me) = M{1} = pr3(M,),
which define a filtered flat connection
M, — M, ®p; Q7!
with de Rham complex M, ®pr Q°.

Proposition 6.1.7. If M is a T-edged quasi-crystal of INF(X/A), then there exists a quasi-iso-
morphism

RT(INF(X/A), M) = (M{0} — M. {1} — M.(2) — ...).
Proof. The result follows from Corollary 6.1.2 and Lemma 6.1.4 as in [Stacks, Tag 07JN]. U

Corollary 6.1.8. If M is a T-edged quasi-crystal, then
HI(INF (X /A), M @0 QT

cris cris)

=0
for alli >0 and 5 > 0.

Proof. By Lemma 4.4.8, the sheaves Q;’ris are T-edged quasi-crystals, which implies that M ®or7
o
Cris

using the complex Me{*} ® pr 1. Q7"{}, which is acyclic by Lemma 6.1.5. O

is a 7-edged quasi-crystal. Thanks to Proposition 6.1.7 we can then compute its cohomology

Lemma 6.1.9 (Bhatt—de Jong). Let A be an abelian category and let

K*{0} —= K*{1} —= - --

be a cosimplicial cochain complex of A such that for every b > 0 the complex K*®(b) is concentrated
in non-negative degrees. For 0 < i < b write a;p, : K*{0} — K*(b) for the morphism of complezes
induced by the morphism [0] — [0, ...,b] which sends 0 to i. Suppose that the following conditions
are satisfied.

(1) For every 0 < i <b, the morphism o, is a quasi-isomorphism .
(2) For every a > 0, the cochain complex associated to K®{x} is acyclic.

If K** is the double complex associated to K*{x}, then both K%* and K*° are quasi-isomorphic to
Tot(K**).


https://stacks.math.columbia.edu/tag/07L9
https://stacks.math.columbia.edu/tag/07KQ
https://stacks.math.columbia.edu/tag/07KQ
https://stacks.math.columbia.edu/tag/07JN
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Proof. We first note that for every 0 < ¢ < b and j > 0, the isomorphisms
aip: HI(K*{0}) = HY(K*{b})
have as common inverse the morphism
HI(K*{b}) — H’(K*{0})

induced by [0,...,b] — [0]. In particular, they are independent of i. When taking the first spectral
sequence associated to the double complex K**, the differentials of the first page are

HI(K%) % HI(KY) 2 BI(K?) S HI(K3) > .

This implies that K%* is quasi-isomorphic to Tot(K**). Looking at the second spectral sequence,
Condition (2) implies that K*V is also quasi-isomorphic to Tot(K**). O

Theorem 6.1.10. Let M be a T-edged crystal over INF(X /A). There exists a compatible system
of quasi-isomorphisms of filtered complexes

RI'(INF.(X/A),M) = M.®p;Q*
indezed by e > 1.

Proof. We want to apply Lemma 6.1.9. We consider the double complex K** of filtered modules
defined by
K® = M, ®p: Q0{b}.
By Lemma 6.1.5, the columns K%* are acyclic when a > 0 and K%* is quasi-isomorphic to
RT'(INF.(X/A), M) thanks to Proposition 6.1.7. By Lemma 4.3.8, we deduce that for every
0 <4 < b the morphism
a;p: Me @pr Q0°{0} — M, ®@pr Q0°{b}

is a quasi-isomorphism. O
6.2. Comparison with rigid cohomology.
6.2.1. We write (A, Fil) for the projective limit

lim O3 (Z/p°[t], (Fy[t], 1))

e

By definition, Fil®(A,,) is the projective limit
I Z[t, £1/(£)° C T2/ [t,671] = Z,t, 7).
€ €

We denote by Z,(t,t~!)~ the Zy-submodule of Z,(t,t™1) of series of the form > 3°, a;t~* with
a; € Z,, and by Fil’(A,,)~ the intersection Fil®(A,) N Z,(t,t~1)~.

Lemma 6.2.2. Fvery element of FilO(An)_ can be written uniquely in the form
o0
D bl (&)
i=1

where each bi(t) € Zy[t] is a polynomial of degree at most n — 1.

Proof. This follows from the analogous result modulo (£ )¢ for every e. O
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Write By, g, for the (unfiltered) Q,-algebra Fil’(A, )[l] =A [f] and C, g, for the subalgebra of
Zp<t,t_1>[l] of series 302 a;jt/ such that v,(a;) > [— n] for j small enough.

Lemma 6.2.3. The algebra Cy, q, coincides with the subset of f € Zy(t, t™* >[7] which can be written
as a sum f = fy + f_ with fi € Zy(t )H and f_ € Fil°(A,)~ [p]. In particular, B, g, = Cno

PN
Proof. 1t is enough to prove the result for those f = Z]__Oo ajtj € Cpq, with a; =0 for j > 0.

Write e, for [5] and suppose that v,(a_g) > e for m > 0 and k > mn, then

f= Za Wt F Z pra —k

k=mn+1

where o’ , = “’“ € Zy. Since

Z peka t k Z Z pia/_ktin—kt—m _

|
S
S
o
~
S—
—
Shs
N—
Z

k=mn+1 i=m+1k=(i—1)n+1 i=m-+1
with
in '
bi(t) = >t h ezt
k=(i—1)n+1
of degree at most n — 1, we conclude by Lemma 6.2.2. g

Corollary 6.2.4. There exists a natural isomorphism

@BH:QP 1> Qp@)la
n
where Qp<t)z C Qp(t,t™1) is the subring of series which are overconvergent at 0.

7. A STACKY APPROACH

7.1. The convergent stack. We reinterpret the convergent site construction by associating to
schemes over ), a convergent stack.

Definition 7.1.1. Let Aff@p denote the category of complete affinoid rings (R, R*) over (Qp,Z,),
that we call p-adic affinoid rings. For a scheme X over F, and m € Zx(, we define the functor

X{m Afig — Set, (R, R")— X(R'/Nn(RY)).

COHV

The convergent stack is the functor

Xeonv = 1_D>1Xcgf1)v

Let us compute this functor for semi-perfect schemes.

Construction 7.1.2. Let C be a semi-perfect ring and write J for ker(W(C”) — C” — C). For
every m € Zxo, we define

A (0) = Bl m (W(C’b))
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endowed with the standard Zso-grading. The p-completed graded localisation of AEQV(C’) with
respect to p(1) is the p-adic algebra

A (C) = W (C?)[ L2,

conv P

We also consider the ramified variant

A (©) 3= B, (WE7)

conv J(m,n)

where Bll_/pn(—) is the p—l,LZZO—graded blow up algebra and J™™) = (p/P" j(m="))  There are
natural morphisms

A0y — AmD(C) — A (0) — ...

conv conv conv

We denote by Bégﬁ)v(c), Bégﬁ)v(C’), ... the extensions to Q. Let XM be the generic fibre of the
p-adic completion of

Proj(B{™m(C), Almm) (¢)).

conv ? conv

We get a tower

(71 o R o Rl > XD,

Lemma 7.1.3. The projective limit XC(Q?I’VOO) of (7.1) is a perfectoid space.

Lemma 7.1.4. For a semi-perfect ring, the adic space Spa(Bégfl)v(C),Agzgv(C)) is preperfectoid,
hence sheafy.

Proof. Set A = Ali(C) and B := BUi.(C). Consider the perfectoid affinoid ring (R, R*) € Aff)
obtained as the p-adic completion of (Qp[pl/ P17, [p*/P™]). Form the tensor product in Aff@p

(B/, A/) = (B, A)@(szp) (R, R+)
We have that Spa(B’, A’) is an affinoid open of f(égﬁfo), hence perfectoid by Lemma 7.1.3. O

m)

Lemma 7.1.5. For a semi-perfect ring C, the adic space Spa(Béonv(C),Agﬁl)v(C')) represents the
functor (Spec(C’)),(;ZQV.
Proof. For (R,R") € Aﬂ'@p, a morphism

(Bl (C), A (©) = (R, RY)

corresponds to a continuous homomorphism f : W(C?) — RT such that f(.J) € N,,(R*). Hence it
is equivalent to the datum of a morphism C — R*/N,,(R"), as we wanted. O

Proposition 7.1.6. The assignment X — Xcony defines a functor
{Semi-perfect schemes/F,} — {Preperfectoid spaces/Q,}.

Proof. For semi-perfect affines this follows from Lemma 7.1.4 and Lemma 7.1.5. O
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7.2. The marked convergent stack.

Definition 7.2.1. A marked p-adic affinoid ring (R, R") is a p-adic affinoid ring (R, RT) endowed
with a marking on R™ /N (R"). We denote by ﬁap the category of p-adic marked affinoid rings.
For a marked scheme X over F,, and m € Z>(, we define the functor

Xt ATy, — Set, (R, RY)— X(Ry))

—conv
and we take

=—conv ==conv"
m

X = n_n;XW)

We say that X is the marked convergent stack of X.

conv

Definition 7.2.2. A meromorphic coherent module over X ., is the datum of a coherent module
M4 4+ € Coh(A™) for every morphism Spa(A, AT) — X .. with (4,4%) € ﬁap, together
with the datum of isomorphisms

My a+) ®amer B™ = M(p gt
for every commutative triangle

Spa(B, B") Spa(A, AT)

\ /

X

=——conv"*

We write Coh™ (X, ) for the category they form.

=—conv

Similarly, a 7 -edged coherent module is the datum of a coherent module M4 4+) € Coh(A™) for
every morphism Spa(4,A"7) — X additionally endowed with analogous compatibility isomor-

==conv?’
phisms. We write Coh™ (X ) for the category of 7o.-edged coherent modules.

=—conv
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